Quantitative image texture analysis predicts malignancy on multiparametric prostate MRI

Depeursinge, Adrien (University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis)) ; Sonn, Geoffrey (Stanford University School of Medicine) ; Hahn, Lewis (Stanford University School of Medicine) ; Fan, Richard (Stanford University School of Medicine) ; Barker, Jocelyn (Stanford University School of Medicine) ; Rubin, Daniel (Stanford University School of Medicine)

This study demonstrates the feasibility of using quantitative Riesz texture analysis to predict whether a suspicious lesion on mpMRI (PI-RADS ≥3) is cancerous. Particularly notable is the 85% correct prediction for PI-RADS 4 lesions, given the tremendous variability of biopsy results for PI-RADS 4 lesions among different radiologists. Validation of this approach in a larger dataset is ongoing. In the future, we expect that quantitative image analysis will be incorporated into grading systems to refine prostate mpMRI image interpretation, enable greater reproducibility across radiologists, and improve patient counselling and decision making about prostate biopsy.


Type de conférence:
short paper
Faculté:
Economie et Services
Ecole:
HEG VS HES-SO Valais-Wallis - Haute Ecole de Gestion & Tourisme
Institut:
Institut Informatique de gestion
Classification:
Informatique
Adresse bibliogr.:
Indian Wells, USA, 25-29 October 2015
Date:
Indian Wells, USA
25-29 October 2015
2015
Pagination:
1 p.
Titre du document hôte:
Proceedings of the 91st Annual Meeting of the Western Section of American Urological Association (WSAUA) 2015
Le document apparaît dans:

Note  Le statut de ce document est: non diffusé

Note: The status of this file is: restricted


 Notice créée le 2015-11-18, modifiée le 2018-02-15

Fichiers:
Télécharger le document
PDF

Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)