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Abstract
Background and Objective  Pharmacokinetic models can inform drug dosing of vancomycin in neonates to optimize therapy. 
However, the model selected needs to describe the intended population to provide appropriate dose recommendations. Our 
study aims to identify the population pharmacokinetic (PopPK) model(s) with the best performance to predict vancomycin 
exposure in neonates in our hospital.
Methods  Relevant published PopPK models for vancomycin in neonates were selected based on demographics and vancomy‑
cin dosing strategy. The predictive performance of the models was evaluated in Tucuxi using a local cohort of 69 neonates. 
Mean absolute error (MAE), relative bias (rBias) and relative root mean square error (rRMSE) were used to quantify the 
accuracy and precision of the predictive performance of each model for three different approaches: a priori, a posteriori, and 
Bayesian forecasting for the next course of therapy based on the previous course predictions. A PopPK model was considered 
clinically acceptable if rBias was between ± 20 and 95% confidence intervals included zero.
Results  A total of 25 PopPK models were identified and nine were considered suitable for further evaluation. The model of 
De Cock et al. 2014 was the only clinically acceptable model based on a priori [MAE 0.35 mg/L, rBias 0.8 % (95% confi‑
dence interval (CI) − 7.5, 9.1%), and rRMSE 8.9%], a posteriori [MAE 0.037 mg/L, rBias − 0.23% (95% CI − 1.3, 0.88%), 
and rRMSE 6.02%] and Bayesian forecasting for the next courses [MAE 0.89 mg/L, rBias 5.45% (95% CI − 8.2, 19.1%), 
and rRMSE 38.3%) approaches.
Conclusions  The De Cock model was selected based on a comprehensive approach of model selection to individualize 
vancomycin dosing in our neonates.

1  Introduction

Despite the use of vancomycin in neonatal intensive care 
units to treat infections for more than four decades [1], a lack 
of consensus remains on optimal dosing. Dosing decisions 

are particularly challenging in neonates, because patient 
characteristics such as age [gestation at birth and postnatal 
age (PNA)], body weight, and maturation of organ function 
contribute to rapid changes in vancomycin pharmacokinet‑
ics. Vancomycin is predominantly renally cleared, and its 
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Key Points 

A pharmacokinetic model selection based on population, 
disease, and treatment characteristics can help to reduce 
the workload for model evaluation.

A pharmacokinetic model evaluation using local popu‑
lation data should be used to choose the appropriate 
model.

A vancomycin trough concentration in neonates does not 
have to be higher than 15 mg/L to achieve an AUC​24/
MIC ratio > 400 h.

renal elimination depends mainly on glomerular filtration, 
which increases as a function of PNA as renal function 
matures [2]. Although vancomycin pharmacokinetics have 
been extensively studied, empiric dosing based on either 
fixed, body weight, serum creatinine, and/or age-based dos‑
ing frequently fail to achieve the exposure targets [3]. Hence, 
dosing decisions should be based on vancomycin concen‑
trations, a practice known as therapeutic drug monitoring 
(TDM). Trough concentrations (Ctrough) between 10 and 20 
mg/L and the ratio of the area under the 24-hour concentra‑
tion–time curve to the minimum inhibitory concentration 
(AUC​24/MIC) of 400–600 h have both been considered as 
exposure targets in adults [4]. However, it remains unclear 
whether these exposure targets can be extrapolated to neo‑
nates. Previously, we have shown that vancomycin dose 
adjustments were required in 62% of courses of therapy of 
greater than 3 days [5]. Hence, better vancomycin dosing 
strategies and more effective TDM practices are needed to 
achieve vancomycin exposure targets in neonates.

Model-informed precision dosing (MIPD) software, a 
computational tool, has grown to use mathematical models, 
patients information, and observed concentrations to opti‑
mize therapy [6]. MIPD proved its benefit to predict the 
required dose to reach target attainment, and broad imple‑
mentation is limited due to lack of understanding of its ben‑
efit and skills, costs, and regulatory issues [7]. Such soft‑
ware has shown benefits in reducing incidence and/or rate 
of adverse effects and improving clinical outcomes. Also, 
it proved its benefits in reducing the costs of treating infec‑
tions [8].

To fully prevail these benefits, we have to select the best 
model to describe the local patient population, as an inac‑
curate prediction of drug exposure can lead to inappropriate 
dose recommendations [9].

Therefore, the aim of our study is to identify vancomycin 
PopPK models in neonates from literature and evaluate the 
predictive performance of the selected models using data 
from our local neonatal intensive care unit (NICU) popu‑
lation. Literature indicated that pharmacokinetics (PKs) in 
both preterm and full-term neonates are quite similar, and 
there is no real difference between term and preterm models, 
as vancomycin PK models consist of various combinations 
of significant covariates, such as postnatal age, postmen‑
strual age, and weight, which indicates growth and matura‑
tion [2]. Vancomycin AUC​24/MIC, rather than trough con‑
centration, is the pharmacokinetic parameter used to inform 
dosing decisions for vancomycin in adults [10]. Recent 
studies have revealed that an AUC​24/MIC ratio 400–600 h 
is highly predictive of efficacy and toxicity of vancomycin 
in neonates [10, 11]. However, AUC​24/MIC calculation is 
practically limited in individuals due to the need of collect‑
ing more than one trough concentration. In adults, a trough 
concentration range between 15 and 20 mg/L is expected to 
reach an AUC​24/MIC ratio > 400 h, but in the case of neo‑
nates, lower trough concentration ranges could be sufficient 
to reach an AUC​24/MIC > 400 h [12]. As a secondary out‑
come, the correlation between AUC​24/MIC and a posteriori 
trough concentrations was evaluated using the best possible 
model.

2 � Methods

2.1 � Model Selection

To identify vancomycin PopPK models, a systematic litera‑
ture search was performed using the PubMed database from 
its inception to 7 April 2022. The search terms were “van‑
comycin” and “neonates” and “pharmacokinetics”. Titles 
and abstracts were independently reviewed by two research‑
ers (DA and RV) before full text articles were retrieved for 
assessment. The reference lists of included articles were man‑
ually screened to identify additional studies. PopPK models 
were included based on matching local demographic charac‑
teristics such as gestational age 28 (24.4–33.3) weeks, post‑
natal age 19 (1–91) days, postmenstrual age 31.1 (25.1–42) 
weeks, weight 975 (495–2142) g, and dosing regimen 15 
mg/kg intermittent intravenous (IV) infusion [5]. Studies 
on neonates on extracorporeal membrane oxygenation were 
excluded. PopPK models lacking relevant details on model 
parameters preventing replication were also excluded. Data 
on model structure, population pharmacokinetic parameter 
values, covariate relationships, inter-individual variability, 
residual variability, and patient cohorts’ demographic char‑
acteristics were extracted from eligible studies. As the babies 
in our cohort were born as a preterm, and some of them 
stayed in the hospital for a long time, the median (range) of 
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hospital stay was 27 (7–90) days, and they received more 
than one vancomycin course during their hospital stay at dif‑
ferent occasions at postmenstrual age (PMA) < 37 or > 37 
weeks, we included studies with preterm and term neonates. 
For studies presenting more than one model with two differ‑
ent settings or populations we chose the model best reflecting 
our cohort and situation. Out of the models reflecting the 
same population, we choose the model with the lowest objec‑
tive function value (OFV) [13]. Extracted data (DA) were 
independently verified by a second reviewer (TN).

2.2 � Vancomycin Validation Dataset

We used a previously published dataset from Westmead 
Hospital (Sydney, Australia) NICU, which included van‑
comycin dosing and concentration data from 69 neonates 
between January–December 2019 [5]. This study was 
approved by the local Human Research Ethics Committee 
(approval number 2008-05 QA). Vancomycin dosing and 
TDM practices were at the discretion of the treating physi‑
cian. In brief, vancomycin was administered intermittently 
at 15 mg/kg/dose in a frequency based on patient’s corrected 
gestational age (CGA) and postnatal age. TDM was per‑
formed after the fourth dose in neonates age CGA > 29 
weeks and before the second dose in neonates of CGA ≤ 29 
weeks. The vancomycin dose was adjusted in both of under 
and overexposure based on the hospital’s protocol. A trough 
concentration between 10 and 20 mg/L was considered the 
therapeutic target according to the hospital guidelines. All 
samples included this study were trough concentrations.

2.3 � Model Predictive Performance Evaluation

The predictive performance of each selected model was 
evaluated in Tucuxi [14, 15] using the vancomycin validation 
dataset [5]. While Tucuxi offers a user-friendly graphical user 
interface, its core computing engine can also be run as a com‑
mand line tool. To automate the tests and reduce the human 
error factor, we designed Python scripts for getting all the data 
from an Excel file, running the command line tool, and extract‑
ing the data. It also offered a way to detect errors in the dataset, 
allowing a better check of the initial data. The computations 
were run for all the patients in three different modes: a priori 
prediction, a posteriori prediction, and Bayesian forecasting for 
next course. Covariates considered significant in each model 
such as PNA, CGA, gender, birth weight, weight at initiation 
of the vancomycin course of therapy, and serum creatinine 
(Scr) were used for a priori prediction without any vancomycin 
concentrations. Although, each model has its own structure, 
whether it is 1 or 2 compartment model and various significant 
covariates, Tucuxi allows users to upload any model via an 
online drug editor and select a Bayesian prior based on the 
study cohort. Afterwards, using parameters and a structural 

model, Tucuxi will predict concentrations, which can be com‑
pared with the observed concentrations. The observed serum 
vancomycin concentration for each patient was used for a pos‑
teriori estimation of individual pharmacokinetic parameters, 
which in turn is used to predict concentrations. For patients 
with more than one course of vancomycin therapy during their 
hospital admission, the first course of therapy was used to pre‑
dict the concentrations in the next course, considering interac‑
tion between interindividual variability and residual variability 
for prediction of subsequent serum vancomycin concentrations 
(Bayesian forecasting). Mean absolute error [MAE, (Eq. 1)], 
relative bias [rBias, (Eq. 2)] and relative root mean squared 
error [rRMSE, precision (3)], were calculated to quantify the 
accuracy and precision of PopPK models, respectively:

where N is the number of vancomycin concentrations.
A model was considered clinically acceptable when rBias 

ranged between − 20 and 20% and when the 95% confidence 
interval (CI) included zero [16, 17]. All models were com‑
pared based on bias and rRMSE, and we selected those mod‑
els with the lowest values because there are no established 
thresholds for bias and rRMSE in literature; more research 
is needed to specify the precision acceptability threshold for 
vancomycin predictions in neonates [17]. The goodness of fit 
plots was used to assess the correlation between predicted and 
observed concentrations.

2.4 � The Relationship Between Trough Vancomycin 
Concentrations and AUC​24h

The relationship between daily vancomycin AUC​24h values 
and predicted trough concentrations using the best perform‑
ing model in an a posteriori approach was determined by the 
linear regression correlation constant [18].

3 � Results

3.1 � Model Selection

Overall, 25 vancomycin PopPK models for neonates were 
identified, of which 9 models were evaluated [19–27], the 
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overall description of the model is in Table 1. Sixteen mod‑
els were excluded for the following reasons: study included 
mixed populations other than neonates such as older children 
and infants [9, 28, 29], vancomycin administration was a 
continuous infusion [30–32], essential details of the PopPK 
model description such as model structure, variability, phar‑
macokinetic parameters, and covariate relationships were 
lacking [33–37], or patients were receiving extracorporeal 
membrane oxygenation [38] or positive pressure ventila‑
tion [39]. Lastly, one model was excluded, as it was specifi‑
cally designed to investigate the effect of amoxicillin and 
spironolactone coadministration on vancomycin clearance 
and volume of distribution [40]. In the study of De Cock 
et al. [19], two models were identified. One of these models 
was excluded, as it included ibuprofen coadministration in 
the covariate model and used an Amikacin covariate model 
to predict vancomycin clearance, which is not reflective of 
our cohort [41]. The flowchart in Fig. 1 summarizes the 
model selection criteria.

3.2 � Validation Vancomycin Dataset

The validation dataset included data on 69 preterm neonates, 
all admitted to the NICU with a median (range) age of 28 
(24.4–33.3) weeks and body weight of 975 (495–2142) g. 
They received an intermittent IV course of vancomycin with 
a median (range) daily vancomycin dosage of 18 (9–56) mg/
day for 1–8 days, and 118 vancomycin concentrations were 
available for model validation and simulations. The demo‑
graphics and baseline clinical characteristics of the popula‑
tion are summarized in Supplementary Table S1.

3.3 � A Priori Approach

A priori analysis for all 69 neonates using only patient’s 
covariates showed that models by Frymoyer et al., Grims‑
ley et al., and Mulubwa et al. [20–22] had rBias values 
between − 20 and 20%, but they were considered biased as 
their 95% CI did not cross through zero (Fig. 2a). Predicted 
and observed concentrations for Kimura et al., Lee et al., 
Lo et al., Mehrotra et al., and Dao et al. [23–27] had a 
significant difference (> 20%), and their rBias was outside 
the clinically acceptable range. As such these models were 
not considered further. On the other hand, the De Cock 
model [19] had a clinically acceptable rBias. Additionally, 
De Cock had a precision higher than 90%, whereas all the 
other models had a precision < 61% (Fig. 2b).

3.4 � A Priori and a Posteriori Approaches

Using the a posteriori approach for the first observed con‑
centration and the patient’s covariates, the accuracy and 

precision of all models improved compared with the a 
priori approach (Fig. 2c, d). For example, the precision of 
the best fit model (De Cock) increased by 2.88% using the 
a posteriori approach compared with the a priori approach. 
A similar conclusion can be reached using the goodness 
of fit between predicted concentrations using a priori and 
a posteriori approaches (Figs. 3, 4, respectively) for all 
selected models. The solid line shows the ideal situa‑
tion of the perfect model, where observed concentrations 
equal predicted concentrations. The gradient line shows 
the trendline of the model’s prediction. Using the a priori 
approach, an ideal correlation factor, due to using one 
factor of the patient’s data (patients’ covariates), as such 
in Fig. 4 shows that the a posteriori approach enhanced 
the correlation results for all models as it used the recent 
observed concentrations as well as the patients’ covariates. 
The goodness fit plot in Fig. 4 also suggested that the De 
Cock model was the best fit for the observed data using the 
a posteriori approach.

3.5 � A Posteriori Bayesian Forecasting for the Next 
Course

Overall, 27 neonates had 2–5 courses of vancomycin dur‑
ing their hospital stay and were used to assess the Bayesian 
forecasting approach using the previous course’s observa‑
tions. In Fig. 2e, the De Cock rBias did not improve com‑
pared with the former two approaches. Furthermore, preci‑
sion reduced to less than 62% for all models, as illustrated 
in Fig. 2f. The De Cock model was the only clinically 
acceptable model using all approaches. Renal changes over 
time in newborn were modeled using age indicator (PNA) 
and the ratio between observed and predicted concentra‑
tions, as in Fig. 5. It shows that predictions in neonates 
with age range between 15–30 days was adequate with a 
ratio close to 1. The trend to lower ratios in some of the 
models can be explained by change in renal function with 
PNA. Glomerular filtration maturation changes in prema‑
ture babies with PMA < 37 weeks is slower than in babies 
with PMA > 37 weeks. This was because nephrogenesis 
is not accomplished before 34–35 weeks gestational age 
[42, 43].

3.6 � Trough Concentration and AUC​24h Relationship

The De Cock et al. [19] model was used to compare the 
predicted vancomycin trough concentrations and AUC​24 
values. In Fig. 6, the regression line shows that a trough 
concentration range between 10–15 mg/L correlates with 
an AUC​24/MIC ratio of 400–600 h, assuming a MIC of 1 
mg/L. It showed a high correlation constant for a posteriori 
prediction (r2 = 0.9807).
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4 � Discussion

The predictive performance of nine PopPK models for van‑
comycin in neonates were evaluated in a cohort of 69 pre‑
term neonates (Table 2). In our study, we informed on the 
most appropriate model to be used in dosing software to 
calculate vancomycin dosing in NICU. All the models used 
the trough concentration (one reading) to predict concentra‑
tion, but no peak concentration was collected in our cohort; 
this was one of our study limitations. For neonates < 29 
weeks gestational age, blood sampling was done before the 
second dose, which could not be extrapolated to steady state 
concentration. The De Cock model was the best performing 

model based on the lowest rBias, bias, and rRMSE using all 
approaches, and it shows minimal data spread around the 
linear regression between predicted and observed concen‑
tration. As shown in Fig. 2, RMSE values were low for the 
De Cock model in the first two approaches, and a priori and 
a posteriori approaches 8.9 and 6.02%, respectively; on the 
other hand, the RMSE value was not low in case of the third 
approach (38.3%). This can be explained by the fact that the 
maturation of renal function in neonates, which is highly 
related to PNA, is expected to affect volume status and clear‑
ance and, therefore, change vancomycin pharmacokinetic in 
the next course.

In Fig. 4, using a Bayesian method and trough only con‑
centrations, observed concentrations are very close to pre‑
dicted concentrations. Unfortunately, no peak concentration 
was collected in our cohort, and this was one of our study 
limitations. For neonates < 29 weeks gestational age, blood 
sampling was done before the second dose, which could not 
be extrapolated to steady state concentration. There were 
cases with more than one trough concentration in our cohort, 
ten babies had two trough samples, and three babies had 
three samples during their treatment course. For patients 
with multiple courses of vancomycin, the accuracy and pre‑
cision of all the model’s predictions did not improve when 
using vancomycin concentrations from a previous course of 
therapy. This highlights the importance of obtaining vanco‑
mycin concentration during the current course of therapy 
in preterm neonates and the use of it to guide dosing. This 
may in part reflect the rapid organ maturation in neonates 
[44] and/or dynamic changes in physiology related to their 
critical/unstable conditions [45]. Hence, timely collection of 
a new vancomycin concentration in the ongoing course will 
provide the most accurate and precise information on drug 
exposure and is best suited to guide the dose.

Neonates are a diverse group, ranging from extremely 
premature infants to full-term newborns, and factors such 
as gestational age, birth weight, ethnicity, and postnatal age 
can significantly affect the pharmacokinetics and pharma‑
codynamics of vancomycin. Herein, many factors could 
affect the process of model building and evaluation, such as 
study settings, population characteristics, sample size used 
to build the model, and analytical model. Race and ethnicity 
can affect drug response and metabolism, because it contrib‑
utes pharmacokinetic of drugs such as renal secretion (clear‑
ance), hepatic metabolism, protein binding, and volume of 
distribution [46]. A study in adult patients showed that a 
race-based based estimated glomerular filtration rate (eGFR) 
equation performed better to predict vancomycin clearance 
in Thai population [47]. This has not yet been confirmed in 
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neonates likely due to underpowered studies [48]. Therefore, 
model built using a wide range of neonatal populations may 
exhibit a great variability and could be generalized, as it is 
not restricted to one category of population. For example, 
our dataset had a diverse ethnicity, as the catchment area 
of our hospital has the largest ethnic diversity in Australia 
[49]. As such, models built based on a specific ethnic group 

of population may not be adequate to predict PK param‑
eters in a more general population, such as the model by Lo 
et al., which was built using data from Malaysian preterm 
neonates. Moreover, differences in study design could affect 
model building and evaluation process, such as retrospec‑
tive versus prospective studies. Retrospective studies rely 
on medical records and may have limited control over data 

Fig. 2   Models rBias (a) and rRMSE (b) for apriori prediction, mod‑
els rBias (c) and rRMSE (d) for aposteriori prediction, and models 
rBias (e) and rRMSE (f) for Bayesian forecasting of second course 
predictions. Data labels adjacent to each bar are shown for rBias and 

rRSME. Error bars; 95% CI of rBias%. For the clinically acceptable 
model, the rBias was between −  20 and 20%, and 95% CI passed 
through zero. rBias relative bias (accuracy), rRMSE relative root 
mean square error (precision)
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collection and patient management. Prospective studies, on 
the other hand, allow for standardized data collection, more 
rigorous monitoring, and controlled dosing regimens, reduc‑
ing some sources of variability. Furthermore, models built 
using a smaller population size may not give a complete 
description of patient’s population pharmacokinetics of van‑
comycin. This may result in biased or imprecise Bayesian 
estimation of vancomycin exposure, such as what we noticed 
in the Mulubwa and Kimura models, which were built using 
only 19 neonates, which might be the reason that those two 
models did not perform well in our dataset. Variations in 
laboratory techniques, calibration standards, and quality 
control procedures can introduce variability in measured 
drug concentrations across studies, as such, affecting model 
building and evaluation.

There are multiple possible reasons why the De Cock 
model performed well with our data. First, vancomycin 
exposure after IV infusion is generally described by a two-
compartment model [9]. The original model by De Cock 
et al. is a two-compartment model, and it was based on 
a large dataset of 689 neonates, where all neonates were 
preterm with a birth weight range between 385 and 2550 g 
and a PNA of 1–28 days. In our cohort, all neonates were 
born prematurely (< 28 weeks gestation) and started a 
vancomycin course within a median (range) of 20 (1–91) 
days of their life. Comparable neonatal populations (i.e., 
gestational age and birth body weight) between the model 
building dataset of De Cock and our validation dataset 
might explain the good performance of the De Cock model 
compared with other models.

Fig. 3   Goodness of fit plot, portraying the predicted concentrations using a priori approach for all selected models. The solid line shows the ideal 
situation of the perfect model, where observations equal predictions. The gradient shows the trendline of the model’s prediction
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AUC​24/MIC is an important pharmacokinetic parameter 
used to evaluate the efficacy of vancomycin therapy in 
adults. For most infection caused by susceptible Gram-
positive bacteria, a target AUC​24/MIC ratio of 400–600 h 
is considered optimal [50]. In this study, an AUC​24/MIC 
ratio of 400–600 h correlated well with a trough concen‑
tration of 10–15 mg/L, with a high correlation coefficient 
close to one that is consistent with the high correlation 
factor found by other studies, which used a large number 
of neonates, such as Tseng et al. [51]. It was found that 
the trough concentration does not have to be higher than 
15 mg/L in neonates to achieve AUC​24/MIC ratio > 400 
h [52]. Also a recent study revealed a significant corre‑
lation between trough concentration and AUC​24/MIC at 

different dosing and dosing intervals [11]. The PMA of 
our cohort ranged from 25 to 42 weeks, with a weight of 
495–2142 g, which can be considered heterogeneous. The 
vancomycin dosing regimen of our hospital [3] includes 
dosing according to PMA and PNA, bodyweight, and renal 
function, which likely corrected for this heterogeneity, as 
shown in Fig. 6.

Our study also has some limitations. We applied a prede‑
fined criterion developed with the aim to select a model suit‑
able for clinical practice in our patient population. Use of this 
criterion may have resulted in the exclusion of models that 
could have performed well. This was seen earlier in a study 
by Colin et al. [53], which included a greater age range than 
considered appropriate for our intended population. In our 

Fig. 4   Goodness of fit plot, portraying the predicted concentrations using a posteriori prediction approach for all selected models. The solid line 
shows where observations equal predictions. The dashed line shows the trendline of the model’s prediction
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study, we did not exclude outliers, as bias due to outliers may 
have impacted model performance. However, in our opinion, 
the current number of patients in the validation dataset was fit 
for the purpose in selecting the best model for the local patient 
population suitable for clinical implementation. Models used 
for extracorporeal membrane oxygenation (ECMO) patients 
and positive ventilation pressure were excluded, as it was not 
representative of our cohort.

5 � Conclusions

The De Cock model was the most precise and accurate 
in predicting vancomycin exposure (with and without 
including a vancomycin concentration) in neonates. Using 
a recent vancomycin concentration improved the predic‑
tive performance of all models evaluated. Also, a trough 
concentration 10–15 mg/L is adequate to reach AUC​24/
MIC > 400 h in neonates.

Fig 5   Overall performance of concentration prediction for vancomycin using the prediction of a next course approach using postnatal age (PNA) 
and ratio between observed and predicted concentrations in all models

Fig. 6   AUC/MIC and trough concentration correlation using De Cock 
model in a posteriori approach
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