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Electromagnetic time reversal is commonly used for field
imaging and focusing. This Letter builds upon the concept
of the time-reversal cavity, which constitutes the main the-
oretical framework of time reversal theory. We study the
behavior of the fields using modern methods of mathemati-
cal physics involving Colombeau generalized functions. This
approach allows for a direct expression of time-reversed
electric and magnetic fields in anisotropic time-reversal-
invariant and nonreciprocal media. Moreover, the results
hold for any arbitrary localized source and can readily be
applied beyond the dipole approximation. Finally, a general
result allows the prediction of the quality of focusing of the
time-reversed fields as a function of the electrical permittiv-
ity and the magnetic permeability tensors in homogeneous
anisotropic media, which contributes to the understanding
of time reversal in complex media such as super-resolution
enabling metamaterials.
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In their Letter [1], Carminati et al. present an analytical pro-
cedure to derive the electric field obtained in a time-reversal
cavity in electric anisotropic inhomogeneous media. In this set-
ting, it is supposed that during the so-called direct-time phase,
a localized source (in the case of [1], an infinitesimal elec-
tric dipole antenna) in an inhomogeneous volume V radiates
electromagnetic fields. These fields are then recorded on the
boundary ∂V of the volume, time-reversed, and emitted dur-
ing the time-reversal phase. Note that the direct-time source is
removed during the time-reversal phase. As in acoustics [2],
we observe that the time-reversed fields converge to the direct-
time source location while suffering from the diffraction limit.
Because of this limitation, the fields are dispersed around the
source location on a focal spot whose size is proportional to
the medium wavelength. To overcome this limit, experimen-
tal solutions involving so-called “super-resolution” techniques
enabled by local scatterers or metamaterials have been pro-
posed in electromagnetism and acoustics [3,4]. While there has

been a strong emphasis on medium inhomogeneity, the anal-
ysis of electromagnetic time reversal in anisotropic media is
still missing and must be considered. The recent increase in
the use of anisotropic metamaterials highlights the need for this
analysis [5].

With this in mind, this Letter investigates the behavior of
electromagnetic fields in the time-reversal cavity. It builds
upon the theoretical framework proposed in [6] by analyzing
the “microscopic” characteristics of the source, thanks to the
use of Colombeau generalized functions, which also rely on
Schwartz distributions [7–9]. These distributions offer the for-
mal setting for dealing with partial differential equations such
as Maxwell’s equations, while Colombeau generalized func-
tions allow distributions to be multiplied and undergo nonlinear
transforms. Thanks to this formalism, the fundamental results
of electric field time reversal presented in [1,6] can directly be
applied to the magnetic and electric fields. Also, thanks to the
broad scope of the reasoning, it is valid for arbitrary local-
ized sources, including high-order multipole moments (e.g.,
quadrupole or octopoles) or non-singular current distributions
(e.g., a current loop with finite cross-section). Furthermore,
the derivation does not rely on the divergence theorem and
can thus be applied to time-reversal-invariant nonreciprocal
media as in [10]. Because of the link between time-reversal
invariance, energy conservation, and reciprocity [11], such
media must necessarily incorporate gains and losses. Finally,
in homogeneous media, the results can be transformed to the
wavenumber space, thanks to the Fourier transform of tempered
Colombeau functions, allowing for a prediction of the focal spot
size in general anisotropic media. We verify the results in a
uniaxial dielectric anisotropic homogeneous medium, thanks
to the knowledge of the analytical Green’s function of this
medium.

It must be noted that Colombeau generalized functions are not
necessary in homogeneous media since solutions of Maxwell’s
equations can be treated with the convolution operator. The
same holds for any linear partial differential equation with con-
stant coefficients [12]. In inhomogeneous media, however, the
solutions involve products of distributions in the most gen-
eral settings, justifying the usage of Colombeau generalized
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functions. Moreover, their use avoids the explicit need for regu-
larization techniques for integrals containing poles [13] since
this regularization is directly embedded in the structure of
generalized functions.

First, we focus on the general derivation of the time-reversed
fields. We work in frequency domain at a fixed ω, keep the ω
dependence implicit, and make the following assumptions:

(1) The components of the magnetic field B, the electric
field E, Green’s functions, the current density J, the
location-dependent permittivity tensor ε, and the location-
dependent permeability tensor µ belong to the set of tem-
pered Colombeau generalized functions on R3, denoted by
Gτ (R3).

(2) Green’s (generalized) functions Ge for the electric field and
Gm for the magnetic field satisfy the usual wave equations:

∇ ×
(︁
µ−1(r)∇ × (Ge(r, r′))

)︁
− ω2ε(r)Ge(r, r′) = δ(r − r′)I

(1)
∇ ×

(︁
ε−1(r)∇ ×

(︁
µ−1(r)Gm(r, r′)

)︁ )︁
− ω2Gm(r, r′) = δ(r − r′)I,

(2)
where ∇× is the curl operator and r and r′ are the spatial
coordinates. Here, the equality is meant in Gτ (R3), I is the
3 × 3 identity matrix, and δ ∈ Gτ (R3) satisfies∭

R3
δ(r)ϕ(r) d3r = ϕ(0) (3)

for all ϕ ∈ D(R3), where D(R3) is the set of test func-
tions on R3 (smooth functions with compact support). In
other words, δ is a Colombeau generalized function such
that its “distributional shadow” [8] is the usual Dirac δ dis-
tribution. More precisely, by considering all functions to
be Colombeau generalized functions, we have introduced a
degree of freedom corresponding to microscopic informa-
tion. Equation (3) states that δ behaves macroscopically as
the usual Dirac δ distribution. For simplicity, we will denote
Eqs. (2) and (1) by

Le(r)Ge(r, r′) = δ(r − r′)I (4)

Lm(r)Gm(r, r′) = δ(r − r′)I, (5)
where Lm,e(r) are the appropriate differential operators.

(3) The medium is time-reversal symmetric, but not necessarily
reciprocal [10]. Hence, µ and ε (thusLm,e) are real, but might
be asymmetric.

(4) We choose Ge,m to be causal, i.e., the time-domain rep-
resentation of Ge,m has a support in (−T ,∞) for some
T>0.

(5) The electromagnetic fields E, B must satisfy the wave
equations macroscopically:

Le(r)E(r) ≍ −jωJ(r) (6)

Lm(r)B(r) ≍ ∇ ×
(︁
ε−1(r)J(r)

)︁ ∆
= Jm(r), (7)

where ≍ denotes the association between Colombeau gen-
eralized functions (i.e., the left- and right-hand sides of
Eqs. (6) and (7) agree macroscopically), and ∆

= indicates a
definition.

Without loss of generality, let us focus on the magnetic field. As
expected from the distribution theory (seeing Green’s function
as a particular fundamental solution of the differential equa-
tion, which also satisfies the boundary or radiation condition), a

candidate for the magnetic field in direct time is given by

B(r) =
∭

R3
Gm(r, r′)Jm(r) d3r′, (8)

where the integrand is the product of the matrix Gm and the
vector Jm(r) for fixed r and r′. Indeed, let us fix 0<β<1
and a Colombeau mollifier η and denote by f (β,η) a (smooth)
representative of f ∈ Gτ (R3). Then

L(β,η)
m (r)B(β,η)(r)

=

∭
R3
L(β,η)

m (r)G(β,η)
m (r, r′)J(β,η)

m (r) d3r′,
(9)

since the integrand is smooth. By definition of Green’s function
Gm, the right-hand side is∭

R3
δ(β,η)(r − r′)J(β,η)

m (r) d3r′, (10)

which is associated with the right-hand side of Eq. (7) by Theo-
rem 5.1.4 from [7]. Closely related to the direct-time solution B,
let us introduce the field ˜︁B, defined as the causal field radiated
by the time-reversed source. By linearity of the integral, this
field ˜︁B is given by (here, ∗ represents the complex conjugate)

˜︁B(r) =∭
R3

Gm(r, r′)J∗

m(r) d3r′. (11)

Indeed,
Lm(r)˜︁B(r) ≍ J∗

m(r). (12)

Next, notice that the time-reversed field B∗ satisfies

L∗

m(r)B∗(r) = Lm(r)B∗(r) ≍ J∗

m(r) (13)

because the coefficients of Lm are real. Thus, the time-reversal
process yields the field

BTRC(r) = B∗(r) − ˜︁B(r) (14)

=

∭
R3

[︁
G∗

m(r, r′) − Gm(r, r′)
]︁

J∗

m(r) d3r′. (15)

Indeed, by design, BTRC satisfies the homogeneous wave
equation:

Lm(r)BTRC(r) ≍ 0. (16)

This is necessary since no source is present during the time-
reversal phase. Moreover, by the causality of Green’s function,
BTRC corresponds to the time-reversed field B∗ at (sufficiently)
negative times. Afterward, B∗ mixes with the causal diverging
(or outgoing) wave ˜︁B, yielding the usual diffraction limit. In the
same manner, we obtain

ETRC(r) ≍ −jω
∭

R3

[︁
G∗

e(r, r′) − Ge(r, r′)
]︁

J∗(r) d3r′. (17)

The time-reversal formulas given in Eqs. (14) and (17) are valid
for any localized source. Indeed, modeling the source J as a
tempered Colombeau generalized function is a weak hypothe-
sis. In particular, the results hold for any tempered distribution.
For example, electrically large sources modeled as multipole
moments require high-order derivatives of the Dirac δ distribu-
tion. By definition, these result in spatial derivatives of Green’s
function. As a complement to [1], notice that if J corresponds
to a dipole source, the magnetic field amplitude is minimal at
the origin. By Eq. (15), the time-reversed field also exhibits
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this property. Finally, the presented approach is valid for time-
reversal-invariant nonreciprocal media, as the operators Lm,e

need only to be real, not symmetric, which is necessary in [1]
because of the divergence theorem.

Now that we have highlighted the link between Green’s func-
tions and the time-reversed electromagnetic fields, we focus on
the quality of focusing (i.e., the reciprocal of the diffraction spot
size) of the time-reversed fields in homogeneous anisotropic
media. First, we perform a Fourier transform of the spatial
variables and express Eq. (1) as a function of the wavenumber
k =

[︁
kx ky kz

]︁
:

K(k)µ−1K(k)Ge(k) + ω2εGe(k) ≍ I, (18)

where the matrix K(k) represents the curl operator [14]. It is
clear that Green’s function is determined by the inverse of the
matrix:

A(k) ∆= K(k)µ−1K(k) + ω2ε, (19)

which can be symbolically written as [15]

A−1(k) =
adj(A(k))
det (A(k))

, (20)

where adj(A(k)) is the adjugate matrix of A. Similar to [16], we
introduce the set S =

{︁
k ∈ R3 : det (A(k)) = 0

}︁
that describes

the dispersion relation at a given frequencyω. In isotropic media,
S is a sphere of radius k0 = ω/c centered at the origin, where c
is the speed of light in the medium. A possible solution of the
homogeneous equation

A(k)Gh(k) ≍ 0 (21)

is given by

Gh(k) = adj(A(k))gh(k), gh(k) = α(k)δS(k), (22)

where α, δS are tempered Colombeau generalized functions and
δS has a distributional shadow that corresponds to the Dirac δ
distribution on the surface S. Indeed, we have

A(k)Gh(k) = A(k)adj(A(k))gh(k) = det(A(k))α(k)δS(k). (23)

By the argument presented in [16], this corresponds to Eq. (21)
since on the support of δS , det(A(k)) is zero. Next, we must
determine the direction dependenceα(k). Equation (15) imposes
Gh to be the spatial Fourier transform of a purely imaginary
function. Since µ and ε are real, this translates to the parity
condition:

α(−k) = −α(k)∗. (24)

In isotropic media, the rotation invariance of the radiating con-
dition sets [16] α(k) = C ∈ C. It is sufficient for C to be purely
imaginary for the parity condition in Eq. (24) to hold. In turn,
the focusing pattern is given by the inverse Fourier transform:

gh(r) =
C

(2π)3

∫
S

ejk·r d2S. (25)

It is straightforward to verify that, as expected, gh is given by a
sinc function in isotropic media.

In anisotropic media, we propose, as a heuristic, to work with
the same constant-α(k) ansatz. While it is necessary to verify
that a proper choice of C satisfies a radiation condition of the
corresponding Green’s function, this verification goes beyond
the scope of this article as many anisotropic Green’s functions
are yet to be discovered. Moreover, the rotational variance in

Fig. 1. One octant of the dispersion relations for case (I) (uniaxial
medium with εxx = 4) and case (II) (biaxial medium with εxx = 4,
εyy = 2). We denote the inner surface by S1 and the outer surface
by S2.

anisotropic media is captured by the dispersion relation even
for a constant α(k). Furthermore, we will see that this simple
ansatz allows to predict the focusing pattern. Finally, note that
the choice of a constant α(k) corresponds to the radiation of a
Dirac δ distribution. Allowing α(k) to vary may embed higher-
order multipole moments, describing the radiation of intricate
and electrically large current distributions.

This derivation is valid for any anisotropic homogeneous
media. We turn our attention to two cases:

(I) Uniaxial dielectric anisotropic homogeneous media, char-
acterized by a scalar magnetic permeability and a per-
mittivity tensor given by ε = ε0εrDiag(εxx, 1, 1) for some
εxx>0.

(II) Biaxial dielectric anisotropic homogeneous media, charac-
terized by a scalar magnetic permeability and a permittivity
tensor given by ε = ε0εrDiag(εxx, εyy, 1) for some εxx, εyy>0.

Figure 1 presents the dispersion relations for the two cases.
They are formed by two surfaces S1 and S2. We call the solution
corresponding to a single surface a mode. Next, we perform
a numerical integration of Eq. (25) separately on each mode
to obtain gh, plotted in Fig. 2. Finally, [17] provides the ana-
lytical form of Green’s function for uniaxial media (case I).
Figure 3 then presents the diffraction pattern resulting from the
time reversal, given by Ge(r) − G∗

e(r). The two modes are vis-
ible in Green’s function. Indeed, the focus is homogeneous on
the x and y axes, with a wavelength corresponding to vacuum.
This corresponds to S1 on the xy axes. On the other hand, the
wavelength shortens along the z axis, a feature of S2. What is
more, this shortening corresponds to a factor √εxx, which is vis-
ible in the dispersion relation or gh(x, y, 0) in Fig. 2. A similar
argument can be made for the other axis pairs. Also, the trans-
verse dimensions of the dispersion relations translate directly
into the wavelength of the corresponding inverse Fourier trans-
forms. The first mode in the uniaxial medium is isotropic, while
it is anisotropic in the biaxial medium. This anisotropy is influ-
enced by εyy only, and the wavelength in the z axis is reduced by
a factor √εyy. A similar reasoning applies to the second mode.

It is worth mentioning that the anisotropic Green’s function
in Fig. 3 can be explained by two phenomena only: on the
one hand, the well-known dipole radiation in isotropic, homo-
geneous media, and on the other hand, a direction-dependent
scaling of the coordinates. This scaling can be predicted by the
inverse Fourier transform of the dispersion relation gh. The latter
is thus central to understanding the effect of medium anisotropy
on the convergence of time reversal. A straightforward inte-
gration can predict the shape of the focus and, therefore, its
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Fig. 2. Plane cuts of the focusing pattern gh(r) obtained by numer-
ical integration of the dispersion relations in Fig. 1. For clarity, the
pattern is decomposed into two functions, each obtained by inte-
grating over the surfaces S1 and S2. The color bar indicates the
normalized amplitude.

Fig. 3. Plane cuts of the time-reversed field Ge(r) − G∗
e(r)

obtained from Green’s function of the uniaxial medium (case (I)).
We show only the components of Green’s function matrix at index
(3, 3), corresponding to the z-component of the radiation of an elec-
tric dipole polarized along the z-axis. The color bar indicates the
amplitude, normalized to the highest value among all three plots.
Light gray corresponds to zero.

quality—based solely on the dispersion relation. This quantity
is available for arbitrary homogeneous media, for which Green’s
function is usually unavailable directly. For example, for biaxial
media, Fig. 2 predicts an improvement in focusing dependent
on the square roots of the eigenvalues of the permittivity tensor.

Also, this improvement depends both on the axis the field is
looked at and the chosen field component.

Thanks to the proposed approach, it is possible to assess the
performance of the time-reversal process in anisotropic media.
In particular, the approach predicts the resolution limit imposed
by the superposition of the converging and diverging wavefronts
for sources beyond the dipole approximation. This prediction
matters for practical imaging or focusing experiments combined
with resolution-enhancing metamaterials. Indeed, the analysis of
such metamaterials may rely on anisotropic effective constitutive
parameters. Examples include hyperbolic wire media based on
silicon pillar arrays [18] or control over the dispersion through
a dielectric coating [19]. While the effective medium might not
be appropriate for resonant systems [20], dielectric metalenses
are still desirable for loss mitigation. In these cases, the pro-
posed analysis enables the design of subwavelength imaging
systems. Finally, the technique opens the door to wave focusing
or imaging in nonreciprocal media.
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