Learning with feature side-information

Mollaysa, Amina (Haute école de gestion de Genève, HES-SO // Haute Ecole Spécialisée de Suisse Occidentale) ; Strasser, Pablo (Haute école de gestion de Genève, HES-SO // Haute Ecole Spécialisée de Suisse Occidentale) ; Kalousis, Alexandros (Haute école de gestion de Genève, HES-SO // Haute Ecole Spécialisée de Suisse Occidentale)

Very often features come with their own vectorial descriptions which provide detailed information about their properties. We refer to these vectorial descriptions as feature side-information. The feature side-information is most often ignored or used for feature selction prior to model fitting. In this paper, we propose a framework that allows for the incorporation of feature side-information during the learning of very general model families. We control the structures of the learned models so that they reflect features’ similarities as these are defined on the basis of the side-information. We perform experiments on a number of benchmark datasets which show significant predictive performance gains, over a number of baselines, as a result of the exploitation of the side-information.


Type de conférence:
full paper
Faculté:
Economie et services
Ecole:
HEG GE Haute école de gestion de Genève
Institut:
CRAG - Centre de Recherche Appliquée en Gestion
Classification:
Economie/gestion
Adresse bibliogr.:
Barcelona, Spain, 5-10 December 2016
Date:
Barcelona, Spain
5-10 December 2016
2016
Pagination:
5 p.
Titre du document hôte:
Learning in High Dimensions with Structure, Workshop proceedings of the 30th Conference on Neural Information Processing Systems (NIPS 2016)
Ressource(s) externe(s):
Le document apparaît dans:



 Notice créée le 2017-10-18, modifiée le 2017-11-01

Fichiers:
Télécharger le document
PDF

Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)