Improving average ranking precision in user searches for biomedical research datasets

Teodoro, Douglas (SIB Swiss Institute of Bioinformatics, Geneva ; Haute école de gestion de Genève, HES-SO // Haute Ecole Spécialisée de Suisse Occidentale) ; Mottin, Luc (SIB Swiss Institute of Bioinformatics, Geneva ; Haute école de gestion de Genève, HES-SO // Haute Ecole Spécialisée de Suisse Occidentale) ; Gobeill, Julien (SIB Swiss Institute of Bioinformatics, Geneva ; Haute école de gestion de Genève, HES-SO // Haute Ecole Spécialisée de Suisse Occidentale) ; Gaudinat, Arnaud (SIB Swiss Institute of Bioinformatics, Geneva ; Haute école de gestion de Genève, HES-SO // Haute Ecole Spécialisée de Suisse Occidentale) ; Vachon, Thérèse (Novartis Institutes for BioMedical Research, Basel) ; Ruch, Patrick (SIB Swiss Institute of Bioinformatics, Geneva ; Haute école de gestion de Genève, HES-SO // Haute Ecole Spécialisée de Suisse Occidentale)

Availability of research datasets is keystone for health and life science study reproducibility and scientific progress. Due to the heterogeneity and complexity of these data, a main challenge to be overcome by research data management systems is to provide users with the best answers for their search queries. In the context of the 2016 bioCADDIE Dataset Retrieval Challenge, we investigate a novel ranking pipeline to improve the search of datasets used in biomedical experiments. Our system comprises a query expansion model based on word embeddings, a similarity measure algorithm that takes into consideration the relevance of the query terms, and a dataset categorisation method that boosts the rank of datasets matching query constraints. The system was evaluated using a corpus with 800k datasets and 21 annotated user queries. Our system provides competitive results when compared to the other challenge participants. In the official run, it achieved the highest infAP among the participants, being +22.3% higher than the median infAP of the participant’s best submissions. Overall, it is ranked at top 2 if an aggregated metric using the best official measures per participant is considered. The query expansion method showed positive impact on the system’s performance increasing our baseline up to +5.0% and +3.4% for the infAP and infNDCG metrics, respectively. Our similarity measure algorithm seems to be robust, in particular compared to Divergence From Randomness framework, having smaller performance variations under different training conditions. Finally, the result categorization did not have significant impact on the system’s performance. We believe that our solution could be used to enhance biomedical dataset management systems. The use of data driven expansion methods, such as those based on word embeddings, could be an alternative to the complexity of biomedical terminologies. Nevertheless, due to the limited size of the assessment set, further experiments need to be performed to draw conclusive results.


Type d'article:
scientifique
Faculté:
Economie et Services
Ecole:
HEG GE Haute école de gestion de Genève
Institut:
CRAG - CRAG - Centre de Recherche Appliquée en Gestion
Classification:
Sciences de l'information
Date:
2017
Pagination:
18 p.
Titre du document hôte:
Database
Numérotation (vol. no.):
2017, vol. 2017, pp. 1-18
DOI:
ISSN:
1758-0463
Le document apparaît dans:



 Notice créée le 2018-02-19, modifiée le 2018-07-09

Fichiers:
Télécharger le document
PDF

Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)