
Replenishment behavior in sequential supply chains 
 

Amin Kaboli 1 Rémy Glardon 1  Nicolas Zufferey 2 Naoufel Cheikhrouhou 3 

1 Laboratory for Production Management and Processes, Swiss Federal Institute of Technology at Lausanne 

(EPFL), CH-1015 Lausanne, Switzerland, amin.kaboli@gmail.com, remy.glardon@epfl.ch 
2 GSEM – Geneva School of Economics and Management, University of Geneva, Boulevard du Pont-d’Arve 40, 

1211 Geneva 4, Switzerland, n.zufferey@unige.ch 
3 Geneva School of Business Administration, University of Applied Sciences Western Switzerland (HES-SO), 

1227 Carouge, Switzerland, naoufel.cheikhrouhou@hesge.ch 

 

Abstract  
 

Inventory managers do not predominantly follow normative optimization models. At best, they introduce a level 

of bounded rationality in their inventory replenishment decisions. This paper examines the behavior of inventory 

decision-makers under continuous review in a decentralized supply chain, using an experimental approach with 

unknown market demand and local information availability. The analysis reveals that not only the magnitude and 

the variability of order quantity tend to be larger, but also that the order-time intervals is lengthen and highly 

variable while moving upstream along the supply chain. The role of the inventory managers’ replenishment 

decisions on the echelon holding, backorder, and total costs, is also investigated. Finally, a normative model is 

designed and its solutions are compared to the experimental results. It is observed that humans do not operate in a 

perfectly optimal way, but are generally reluctant to risk increasing backorder costs and reducing inventory 

carrying cost, even if this would lead to lower total cost.  

Keywords: Behavioral operations management, Continuous inventory replenishment, Supply chain, Multi-

echelon network, Laboratory experiment, Inventory management, Cost computation, Optimization, Normative 

model, Simulation.  

 

 

1. Introduction 

 

Consider a decentralized supply chain in which products move through multiple serial echelons 

before they are shipped to the end customer. In this multi-echelon inventory system, inventory 

managers make inventory replenishment decisions based on local information (Arguilaget et 

al., 2017) to regulate the inventory levels, minimize costs, and satisfy downstream customer 

demand. The inventory replenishment decision is in response to two fundamental questions: 

how much to order (order quantity) and when to order (order time)? 

 

The frequency of inventory replenishment decisions is determined by the inventory review 

process, which can be periodic or continuous. In the former, inventory is monitored periodically 

and inventory replenishment decision is made at a fixed time interval, whereas in the latter, 

inventory is checked continuously and the order time interval is variable. This fact denotes that 

in a continuous review system, both order quantity and order time intervals are variable. 

Numerous periodic and continuous inventory review models have been proposed to optimize 

echelon’s cost and profit, and consequently to improve supply chain performance (e.g., Aviv, 

2002; Clark and Scarf, 1960; De Bodt and Graves, 1985; Federgruen and Zipkin, 1984; Silver 

and Zufferey, 2011). Some works have also proposed to improve the global performance of a 

supply chain when focusing on the improvement of: the production level only (Thevenin et al., 

2015, 2016); the quality management and the value chain (Voldrich et al., 2017); the inventory 

dispatching when facing unreliable suppliers (Respen et al., 2017); the design of the supply 

chain itself (Carle et al., 2012). However, the actual behavior shows that decision maker’s mind 

has a restricted capacity to formulate complex problems in a finite time, based on the available 

information (e.g., Loch and Wu, 2007; Gino and Pisano, 2008; Simon, 1969).   

There are considerable empirical and experimental evidences indicating that the actual behavior 
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of an inventory manager tends to deviate from the optimal decisions proposed by the extant 

literature on operations management (e.g., Bolton and Katok 2005, Croson and Donohue 2006, 

Schweitzer and Cachon 2000, Sterman 2000). One of well-acknowledged operations 

management problem is the mismatch arising between demand and supply processes. To match 

demand and supply, inventory managers place orders and regulate inventory levels to avoid 

backlog. Yet, their efforts are not always successful and most often result in the demand–supply 

mismatch, which could further exacerbate order quantity and/or order frequency amplification 

along the chain. Despite of the vast amount of literature on order quantity oscillation and 

amplification, there is scarce evidence of the order-time interval variation along the supply 

chain. Given that, interesting questions arise, namely, (i) How do order-time intervals change 

along the supply chain? (ii) Do all inventory managers behave similarly in different echelons? 

(iii) How the variability of order quantity and order time intervals influences the costs within 

the supply chain? 

 

This research aims to understand the ordering behavior of an inventory manager under 

continuous review on decentralized supply chain. Our experiment shows that not only the 

magnitude and variability of order quantity increase, but also the order time intervals lengthen 

and their variability increases along the supply chain from retailer and wholesaler to distributor. 

Section 2 provides a literature review. Sections 3 and 4 respectively describe the problem and 

the proposed method. The results are presented in Section 5. A normative model is designed in 

Section 6, followed by a discussion in Section 7. Section 8 concludes the paper.  

 

2. Literature review 

 

From pivotal studies of the 1960s to the recent ones, researchers have recognized the 

importance of order amplification in supply chains. The literature in inventory replenishment 

can be divided into two streams. In the analytical stream (Subsection 2.1), researchers model 

inventory replenishment and prescribe optimized policies. In the experimental stream 

(Subsection 2.2), researchers assess inventory replenishment decision and describe the causes 

of its amplification along the supply chain. As it is the case for this study, even if some papers 

appear below as experimental (e.g., Lee et al., (1997)), it does not mean that there is no 

normative model or analytical approach for the involved problem, and vice-versa.  

 

2.1. Analytical literature stream on inventory replenishment 

 

Simon (1952) utilizes control theory to analyze simple production-inventory systems. In his 

work, he highlights pure delays in production-inventory systems that are hard to deal with. To 

approximate pure delays, he uses exponential delays by smoothing the output signal over time. 

Vassian (1955) extends Simon’s continuous-time theory to discrete time models. In one of the 

early operations research models addressing multi-echelon inventory, Clark and Scarf (1960) 

propose optimal policies for a multi-echelon inventory problem under periodic review, when 

the demand is uncertain. Schmidt and Nahmias (1985) extend the Clark-Scarf approach by 

characterizing the optimal inventory policy for a simple assembly system. Federgruen and 

Zipkin (1984) also extend the Clark-Scarf approach from the finite horizon to the infinite 

horizon. De Bodt and Graves (1985) extend the Clark-Scarf approach from periodic review to 

continuous review. Badinelli (1992) constructs a model for continuous-review policies in multi-

echelon supply chain. Grubbström and Wikner (1996) study inventory replenishment systems 

with the aid of control theory. They show that inventory trigger control policies can be 

mathematically described by differential equations involving Heaviside and Dirac impulse 

functions. Chen (1999) considers information delays in decentralized supply chains. He also 
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verifies the optimality of implementing a base stock policy under a centralized team. There is 

no doubt on the importance of models in inventory management and their contribution for 

finding optimal inventory replenishment decision indicators. But these analytical models 

assume that people are fully rational, make profit-maximizing decisions, and they are aware of 

the feedback of their decisions. The actual human behavior shows significant deviations from 

optimal policies and prescriptive models (e.g., Bendoly et al., 2006; Bendoly et al., 2009; Gino 

and Pisano, 2008). 

 

2.2. Experimental literature stream on inventory replenishment 

 

Forrester (1961) introduces a nonlinear model of supply chain using exponential delays. He 

designs a role-playing supply-chain simulation game called “Beer distribution game” and 

shows demand amplification in upstream supply chain. He underlines that structure, policies, 

and decision makers’ interactions in supply chain are the main reasons for order amplification. 

Towill (1991) and Wikner et al. (1991) extend Forrester’s work to two-echelon and three-

echelon supply chain contexts, and conclude that the lack of coordination in supply chain leads 

to variability in order quantity across the supply chain. In an empirical study, Lee et al. (1997) 

highlight four structural reasons for order quantity amplification: demand signal processing, 

order batching, price variation, and inventory rationing.  

 

Sterman (1989) presents a generic model of stock management and an ordering decision model 

based on locally rational heuristics in decentralized supply chains. In fact, by characterizing 

decision maker mental processes, he bases the decision process on an anchor and adjustment 

policies, and identifies underweighting the supply line (i.e., units of product ordered but not yet 

received) as the cause of order quantity amplification. Dogan and Sterman (2005, 2006) study 

phantom ordering in order quantity decision-making processes. Phantom orders arise in supply 

chains when an upstream supplier is unable to fulfill orders on-time. Thus, the customer 

responds to backlogs by placing larger order quantities. In a similar work, Oliva and Goncalves 

(2007) study overreaction in order quantity decision-making processes. As in previous studies, 

they find that decision makers ignore the supply line and in case of shortage, they saturate order 

quantity adjustment at a maximum value instead of overreacting. In experimental studies, 

researchers show that shorter ordering and shipment lead-times improve decentralized supply 

chain performance under periodic review (e.g., Kaminsky and Simchi-Levi, 1998; Kimbrough 

et al., 2002; Steckel et al., 2004). Also, sharing point of sale information (e.g., Croson and 

Donohue, 2003; Gupta et al., 2001; Steckel et al., 2004), using electronic data interchange 

(Machuca and Barajas, 2004), and communication (Wu and Katok, 2006), can significantly 

improve decentralized supply chain performance under periodic review. Croson and Donohue 

(2006) show that order quantity amplification remains even when the market demand is known 

and when all four structural causes of order quantity amplification are removed. Rong et al. 

(2008) consider the reactions to supply and demand uncertainty, and introduce reverse order 

quantity amplification. Croson et al. (2012) investigate the role of coordination stock on supply 

chain stability, and show that uncertainty of individual decisions is one of the behavioral causes 

of order quantity amplification.  

 

Despite of the vast literature on order quantity amplification, there is scarce evidence of the 

order time behavior. Given the evidence about the order quantity amplification along the supply 

chain, an interesting question arises: how do order time intervals change along the supply 

chain? To answer to it, we design and run experiments in a decentralized sequential supply 

chain under continuous inventory replenishment. 

3. Problem description 
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Let i be the echelon index (i = [R, W, D]; R: retailer, W: wholesaler, D: distributor) in a supply 

chain, and i = M for the market index. Each inventory manager fulfills the orders received from 

the downstream customer if sufficient on-hand inventory is available, otherwise s/he 

accumulates backlogs. S/he decides on how much and when to order with the upstream supplier 

and places orders 𝑂𝑄𝑖 at time intervals 𝑂𝑇𝑖. 

 

Market demand is unknown and customer orders are transferred in the form of information 

flows from market to factory, trigging material flows from upstream to downstream. Both 

information and material flows are subject to delays: order lead-time (𝐿𝑜 = 1 𝑑𝑎𝑦), and shipment 

lead-time (𝐿𝑠 ≥ 2 𝑑𝑎𝑦𝑠). The nominal shipment lead-time is two days. The shipment lead-time 

is potentially variable and depends on the availability of on-hand inventory at the upstream 

supplier. This represents the time required to receive and to ship orders. Therefore, on-hand 

inventory must be regulated with respect to the shipment delays.  

 

Inventory managers make inventory replenishment decisions with local information at her/his 

echelon i (e.g., the received orders from downstream customer, the on-hand inventory level, the 

placed orders to the upstream supplier, the shipments of upstream supplier, the shipments to 

downstream customer). S/he does not know the orders from the downstream customer that are 

currently being processed, on-hand inventory level of the upstream supplier, and the time at 

which s/he receives the upstream supplier shipments. Her/his goal is to maximize profit or 

minimize the cost. From an optimization point of view, the overall considered cost function to 

minimize contains three components, namely the ordering cost, the inventory carrying cost and 

the shortage cost. Such costs are modeled accurately in Section 6.   

 

Inventory managers must keep enough inventory to fulfill their customer needs and to avoid 

backlogs. To hold enough on-hand inventory, orders of the right quantity must be placed at the 

right time. Nevertheless, customer on-hand inventory depends on the supplier shipments and 

on-hand inventory level at the upstream suppliers. Variable time lags and impacts of previous 

decisions on the future ones add complexity to the continuous replenishment decision. 

 

4. Method 

 

Continuous replenishment decision-making has a dynamic and complex nature. This decision, 

including order quantity and order time, is characterized by time lags and impacts of previous 

decisions on future ones. The laboratory experiment is a suitable research tool to uncover the 

dynamic and complex nature of continuous replenishment decisions and address decision 

makers’ cognitive limitations (e.g., Chatfield et al., 2004; Croson and Donohue, 2002). The 

laboratory experiment provides a stable and controlled environment, which eliminates possible 

noises and external perturbations (Katok, 2011). It provides the opportunity to observe decision 

maker’s behavior over time that ensures multiple, repeatable, and reliable observations. To run 

the laboratory experiment, an appropriate platform is needed. 

 

4.1. Experimental platform 

 

We implement a role-playing platform developed by Montreuil et al. (2008). In this platform, 

continuous inventory replenishment is considered, which means that both order quantity and 

order time are variable. This is the major difference with respect to the well-known beer 

distribution game in which variable order quantities are placed within a fixed time interval 

between orders. More precisely, continuous review means here that the decision maker can 
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always have access to the relevant identified information (e.g., on the inventory level s/he has 

to manage). Therefore, s/he can place an order anytime. This is opposed to periodic review, for 

which the opportunity (in contrast with the obligation) to place an order follows a fixed 

frequency (e.g., once a week).  

 

The platform, which mimics the inventory replenishment dynamics in a decentralized 

sequential supply chain, consists of four echelons representing the roles of retailer, wholesaler, 

distributor, and factory. Market sends purchase orders to the retailer. The retailer delivers the 

requested items out of her/his on-hand inventory and if necessary, sends replenishment orders 

to the wholesaler. Likewise, wholesaler delivers the requested items out of her/his on-hand 

inventory, sends replenishment orders to and receives items from the distributor, who in turn 

sends replenishment orders to and receives items from the factory. The factory produces the 

items. There is no inventory capacity limitation. Figure 1 shows the structure supply chain in 

the experiment. Dotted (resp. solid) lines indicate orders (resp. shipments). Filled (resp. empty) 

rectangles represent echelons with human participants (resp. computer agents). Human 

participants, thereafter subjects, play the roles of the retailer, wholesaler and distributor, and 

computer agents play the factory and the market roles. None of the subjects are aware of the 

fact that the factory role is simulated by the computer. The market demand is stable. It follows 

a normal distribution with a mean (resp. standard deviation) of 3000 (resp. 500) units/day 

(truncated at zero). This daily demand is randomly split in two orders per day. In other words, 

this means that one can expect two orders of 1500 units every day (from the market). The 

demand information is unknown to the subjects. 

 

 
Figure 1: Structure of the supply chain used in the experiment 

 

4.2. Experimental procedure and experimental settings 

 

The experiment proceeds as follows: a subject enters the laboratory at an appointed time, and 

is randomly assigned to a team and a role. Before starting the experiment, we provide 4-5 pages 

handout explaining the instructions of the experiment and a summary of the role information to 

each subject. After that, the subjects read the instructions of the experiment, their questions are 

answered, and the experiment interface is then presented. Subjects are asked to play the 

simulation for almost 30 days (20 minutes) as a warm-up exercise to become familiar with the 

interface. After the warm-up session, we examine the subjects understanding of the experiment 

and their decision task in a short quiz to assure they acquire a sufficient knowledge. To avoid 

an end of the experiment behavior, the duration of the simulation is not announced in advance. 

The experiment lasts for 120 days (55 minutes) followed by a debriefing session. After the 

debriefing session, the subjects are asked to fill in a post-experiment questionnaire to reflect 

their replenishment policies during the experiment. The subjects are paid based on their 

performance during the experiment. 

 

To examine the dynamics of inventory replenishment in a decentralized supply chain, the 

information availability is set as local (Lee and Billington, 1993): subjects are not allowed to 

communicate with anyone during the experiments and have visibility only on their own echelon 

dynamics. Subjects have a permanent access to the following information: the received order 

quantity and order time from downstream customer, their own on-hand inventory, the placed 

order quantity and order time with the upstream supplier, the shipments of upstream supplier, 

the shipments to downstream customer, and their performance measures. For all echelons, the 

Market Retailer Distributor Factory Wholesaler Demand  

N (3000, 500) 
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holding (resp. backorder, fixed ordering) cost is 0.75$/unit/day (resp. 1.5$/unit/day, 15$), the 

initial on-hand inventory is 9000 units, and the benefit is 2$/item. The price of the beer at the 

factory (resp. distributor, wholesaler and retailer) is 4$/item (resp. 6, 8 and 10).  

 

 

4.3. Subjects 

 

48 undergraduate and graduate students (with obvious knowledge in inventory management) 

from two Swiss universities (namely EPFL and UNIL), and engineering and business majors 

participate to the experiment for payoff contingent on their performance. The subjects consisted 

of 39% women and 61% men, with 24% of students in their bachelor, 44% in their master, and 

22% in their PhD. The experiment was conducted in the 2011 spring semester. The earning is 

calculated as in Equation (1). The subjects could earn 10 CHF for showing up to the experiment, 

and up to 50 CHF based on their performance. The maximum earning is approximately 

equivalent to two hours wages for a student job on campus. 

 

Earning = Min {50, Show-up fee (10 CHF) + 40 CHF * (
𝑌𝑜𝑢𝑟 𝑝𝑟𝑜𝑓𝑖𝑡

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑜𝑙𝑒 𝑝𝑟𝑜𝑓𝑖𝑡
)} (1) 

 

5. Statistical analyses and results 

 

The data set consists of 16 teams of supply chain. Observation of the experiment leads to the 

elimination of four supply chains from the data sample, as the related subjects did not make 

properly use of the experimental platform. Thus, we report on the results of N = 12 supply 

chains. Statistical analysis is carried out using SPSS 21. Results of the experiments are analyzed 

on the individual and the echelon levels. The individual level analysis refers to the obtained 

data for each subject, whereas the echelon level analysis refers to the aggregation of individual 

results for a considered role. Unexpectedly, it will be observed that the cost can be strongly 

affected by upstream variabilities. Indeed, the literature usually looks downstream for the 

source of variability and fluctuations.  

 

5.1. Inventory replenishment 
 

5.1.1 Mean replenishment decision indicators 

 

Table 1 summarizes the mean of order quantity and order time intervals for all individuals and 

echelons. For all the teams, the replenishment decision indicators increase while moving from 

retailer to wholesaler. However, only 58% of the distributors increase their replenishment 

decision indicators compared to wholesalers. 

 

 

 

 

 

 

 

 

 
Table 1. Mean order quantity (OQ) and order time intervals (OT, in minutes) 

 

Team Distributor  Wholesaler  Retailer Market 
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OQ OT OQ OT OQ OT OQ OT 

1 7348 61 3137 25 1022 8 1508 12 

2 7875 56 6911 48 5433 43 1508 12 

3 4890 40 7140 59 1872 15 1508 12 

4 3529 29 3802 31 3381 27 1508 12 

5 7039 58 2813 22 1798 15 1508 12 

6 9711 77 4751 38 3781 30 1508 12 

7 5786 47 7957 65 5530 45 1508 12 

8 6566 56 5839 48 5304 43 1508 12 

9 3733 31 6992 57 2627 21 1508 12 

10 1000 8 4000 31 3512 27 1508 12 

11 3415 28 2645 21 1003 8 1508 12 

12 9634 73 3236 24 1000 8 1508 12 

Mean of each echelon 5877 47 4935 39 3022 24 1508 12 

 

Figure 2 displays the minimum, maximum and mean of the replenishment decision indicators 

for each role over the game. The mean of order quantity and order time intervals are (1508, 12), 

(3022, 24), (4935, 39), (5877, 47) for market (M), retailer (R), wholesaler (W) and distributor 

(D), respectively. Table 2 shows the SRCC (i.e., the Spearman Rank Correlation Coefficient, 

(Spearman, 1904)) among the replenishment decision indicators of each echelon. Note that *** 

and ** are significant at p < 0.01 and 0.05 levels, respectively (this also holds for Tables 6 – 9). 

Because the current datasets are not normally distributed, using a nonparametric test as SRCC 

is important in data analysis. We remark a strong positive correlation between mean order 

quantity and mean order time interval for each echelon. Results show that wholesaler’s 

replenishment decision indicators are positively correlated with the immediate customer, but 

distributor’s replenishment decision indicators are not. 

 

 
 

Figure 2. (a) Order quantity (in items) and (b) order time interval (in hours) for each echelon 

 

Table 2. SRCC matrix among replenishment decision indicators of each echelon 

 

  OQD OQW OQR OTD OTW OTR 

OQD 1      

OQW 0 1     

OQR 0.035 0.699** 1    

OTD 0.970*** -0.095 -0.079 1   

OTW -0.018 0.989*** 0.709** -0.095 1  

OTR 0.057 0.676** 0.988*** -0.046 0.679** 1 

 

The analysis of the results of this subsection 5.1.1 leads to two main observations.  
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Observation 1: The mean order quantity and mean order time intervals tend to increase while 

moving upstream along the supply chain under continuous review.  

Observation 2: Retailer and wholesaler replenishment decision indicators are positively 

correlated, whereas distributor replenishment indicators have no significant correlation with 

its immediate customer. 

 

5.1.2. Variability of replenishment decision indicators 

 

The coefficient of variation (CV) is used to study the variability of the replenishment decision 

indicators. CV is a relative variation measure and is a way to interpret the relative magnitude of 

the standard deviation by dividing it by the mean. Table 3 provides an overview of the 

replenishment decision indicators variability. We classify the variability as follows: (1) Low 

variability: 0 ≤ 𝐶𝑉𝑂𝑄 < 0.5 and 0 ≤ 𝐶𝑉𝑂𝑇 < 0.5; (2) Medium variability: 0.5 ≤ 𝐶𝑉𝑂𝑄 < 1, 

and/or 0.5 ≤ 𝐶𝑉𝑂𝑇 < 1; High variability: 𝐶𝑉𝑂𝑄 ≥ 1, and/or 𝐶𝑉𝑂𝑇 ≥ 1. Table 3 shows that: (1) 

6% of the subjects (2 out of 36) have low variability for both order quantity and order time 

intervals; (2) 53% of the subjects (19 out of 36) have medium variability for at least one of the 

two replenishment indicators; (3) 41% of the subjects (15 out of 36) have high variability for 

both replenishment indicators. Furthermore, among all the subjects, one retailer (R12), one 

wholesaler (W10), and one distributor (D10) have fixed order quantity (𝐶𝑉𝑂𝑄 = 0) and variable 

order time intervals policy. All the other subjects (91.5%) follow a variable order quantity and 

variable order time intervals policy.  

 
Table 3. Variability on order quantity and order time intervals for each individual  

 

V
ar

ia
b

il
it

y
 o

f 
o

rd
er

 q
u

an
ti

ty
 

(C
V

O
Q
) 

H
ig

h
          R2  

      W1, W2, W6 

      D6, D7, D9 

M
ed

iu
m

 

  R6, R8, R10    

  W9, W11  W12  

  D2, D3, D11 D1, D8 

L
o

w
   R3, R4, R5, R7, R9, R11  R1, R12  

W3, W7 W4, W5, W10  W8 

  D4, D5 D10, D12 

 
 Low Medium High 

  Variability of order time intervals (CVOT`) 

 

Table 4 summarizes the numbers of individuals for each variability level. The low variability 

results show that only 17% wholesalers place orders with low variability, where no retailer or 

distributor belongs to that variability range. The tendency of the subjects with medium 

variability decreases from retailers (67%), wholesalers (33%), to distributors (25%). For the 

high variability, the variability of the replenishment decision indicators tends to be higher on 

the upstream echelons. Therefore, subjects in upstream echelons place more variable order 

quantities at more variable time intervals. There is no team with low variability condition. There 

are only 2 teams out of 12, with all three players, showing medium variability of their 

replenishment decision indicators. Table 4 also shows that there is at least one subject in a team, 

dominantly among the upstream echelons, who introduces the medium or high variability on 

her/his inventory replenishment decision. 

 

 
Table 4. Number of individuals on low, medium, and high variability conditions 
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Variability 

level 
D W R 

Team # with this 

condition 
Team # with 2 echelons following this 

condition 

Low 0 17% 0 - - 

Medium 25% 33% 67% 4, 5 12 

High 75% 50% 33% - 6, 11, 12 

 

Figure 3 illustrates the variability of the replenishment decision indicators for each echelon. 

The aggregated results at the echelon level show that retailers place orders with higher 

variability of the order quantity and order time interval than the market demand (CVOQ
R

 = 0.43, 

CVOT
R = 0.89). Wholesaler receives these fluctuating orders from retailer and increases the 

variability of order quantity, while the variability of order time intervals stays almost unchanged 

(CVOQ
W

 = 0.62, CVOT
W = 0.88). Finally, the distributor increases the variability of both order 

quantity and order time (CVOQ
D

 = 0.69, CVOT
D = 1.27). Thus, there is an increase of the 

variability of order quantity and order time interval while moving upstream from market along 

the supply chain.  
 

 
 

       

 

 

 
Figure 3: Variability of order quantity and order time intervals at the echelon level  

 

Under continuous review, the results of this subsection leads to two main observations. 

 

Observation 3: The relative number of subjects with high variability of their replenishment 

decision indicators tends to increase while moving upstream from market along the supply 

chain.  

Observation 4: The variability of replenishment decision indicators for each echelon tends to 

increase while moving upstream from market along the supply chain. 

 

5.2. Costs 

 

Table 5 shows the mean of backorder cost (BC), holding cost (HC), and total cost (TTC) for 

each echelon. The cost components that a subject incurred over the experiment in the 

participatory simulation platform consists of backorder cost, holding cost, and purchasing cost. 

Because purchasing cost is highly correlated with order quantity and order time intervals of 

each player, we exclude it from our analysis and mainly focused on backorder and holding cost. 

Thus, the total cost is their sum. The unit cost components are similar across the echelons (see 

Section 4.2). Results show that TTC increase from retailer to distributor. The HC column shows 

an increase from retailer to distributor, and the BC column shows wholesaler incurs less 

backorder cost compared to retailer and distributor.   

 

 

 

 
Table 5. Mean of backorder (BC), holding cost (HC), and total cost (TTC) 

 

Retailer Distributor Factory Market Wholesaler 

CVOQ
M

 = 0.41 

CVOT
M = 0.76 

CVOQ
R

 = 0.43 

CVOT
R = 0.89 

CVOQ
W

 = 0.62 

CVOT
W = 0.88 

CVOQ
D

 = 0.69 

CVOT
D = 1.27 
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  BC HC TTC 

Retailer 503,991 217,019 721,009 

Wholesaler 497,937 486,766 984,703 

Distributor 574,494 687,763 1,262,197 

  

 

To investigate the relationship between the replenishment decision indicators with incurred 

costs, we perform Spearman rank correlation. Table 6 displays the link between replenishment 

decision indicators, backorder cost and holding cost. Results show that the backorder cost of 

distributor is positively correlated with its order quantity. Her/his holding cost is also positively 

correlated with the order quantity as well as with the order time intervals. Moreover, the same 

positive correlation is observed between wholesaler’s backorder cost and both distributor’s 

order quantity and order time intervals. No significant correlation is identified for any of the 

retailer’s cost, nor for the wholesaler’s holding cost. 

 
Table 6. SRCC between replenishment decision indicators, holding and backorder costs 

 

  BcD HcD BcW HcW BcR HcR 

OQD 0.538** 0.587*** 0.706*** 0.182 0.357 0.531 

OQW 0.133 0.308 0.154 441 -0.336 0.175 

OQR 0.028 0.091 0.339 0.385 -0.168 0.147 

OTD 0.417 0.644*** 0.623*** 0.053 0.406 0.41 

OTW 0.112 0.295 0.088 0.442 -0.372 0.123 

OTR 0.007 0.117 0.411 0.315 -0.159 0.209 

  

Table 7 reports the SRCC between replenishment decision indicators and total costs (TTC) of 

each echelon. Results show a strong positive correlation between distributor TTC, distributor’s 

order quantity, and order time intervals. Similarly, the retailer TTC is positively correlated with 

the distributor’s order quantity and order time interval. TTC of wholesaler is also positively 

correlated with wholesaler’s order quantity, but no significant correlation is found with the 

wholesaler’s order time intervals. 

 
Table 7. SRCC between replenishment decision indicators and total costs 

 

  TTCD TTCW TTCR 

OQD 0.727*** 0.608** 0.580** 

OQW 0.364 0.336 -0.301 

OQR 0.168 0.357 -0.105 

OTD 0.658** 0.49 0.592** 

OTW 0.34 0.27 -0.358 

OTR 0.156 0.336 -0.071 

 

Table 8 indicates the SRCC between the variability of the replenishment decision indicators, 

and holding and backorder costs. Results show that the distributor backorder cost is positively 

correlated with the variability of the distributor’s order quantity, wholesaler’s order quantity, 

and order time intervals. The distributor holding cost appears to be significantly positively 

correlated with variability of the distributor’s order quantity. No significant correlation is found 

for wholesaler backorder cost, retailer’s backorder, and holding costs.  
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Table 8. SRCC between the variability on replenishment decision indicators, holding and backorder 

costs 

 

  BcD HcD BcW HcW BcR HcR 

CVOQD 0.601** 0.678** 0.315 0.469 -0.196 0.343 

CVOQW 0.860*** 0.483 0.371 0.503* 0.014 0.476 

CVOQR 0.091 -0.021 0.413 0.636** 0.224 -0.021 

CVOTD 0.196 0.406 0.497 0.315 0.175 0.021 

CVOTW 0.613** 0.165 0.305 0.2 0.242 0.406 

CVOTR 0.329 -0.333 0.098 0.238 -0.137 0.378 

  

 

Table 9 depicts the SRCC among variability of the replenishment decision indicators and TTC. 

We observe: (1) a strong correlation between the distributor’s TTC, and the wholesaler’s and 

distributor’s variability of order quantity; (2) a positive correlation between wholesaler’s and 

retailer’s variability of order quantity and their supplier TTC (distributor and wholesaler, 

respectively); (3) no significant correlation between the variability of order time intervals and 

TTC of any echelon. 

 
Table 9. SRCC between the variability of replenishment decision indicators and total costs 

 

  TTCD TTCW TTCR 

CVOQD 0.846*** 0.28 
-0.20 

1 

CVOQW 0.867*** 0.427 0.193 

CVOQR 0.119 0.580** 0.217 

CVOTD 0.371 0.545 0.147 

CVOTW 0.452 0.375 0.392 

CVOTR 0.063 0.494 -0.032 

 

 

6. Normative model 

 

This section presents a simplified normative model for inventory replenishment in a 

decentralized supply chain. The goal is to identify the optimal replenishment indicators that 

lead to minimize total cost in a decision situation as close as possible to the experiment. The 

model is based on three assumptions: (AI) Profit is considered to be essentially dependent on 

cost rather than income so that the model can be simplified to a cost optimization. (AII) Order 

quantity 𝑂𝑄 and order time interval 𝑂𝑇 are constant (note that OT can be very small, which 

makes the link with the continuous review replenishment policy). This assumption considers a 

stable replenishment decision behavior to be compared with the mean order quantity and mean 

order time intervals indicated in Section 6.1. (AIII) Replenishment order time interval 𝑂𝑇𝑖 is 

larger than received time interval 𝑂𝑇𝑖−1 . This assumption is considered to simplify the 

optimization process by restricting the solution space to that observed in the experiment. 

 

Figure 4 provides an illustration of the modeling situation within a single replenishment cycle 

(hereafter cycle) at echelon i. As defined earlier, i is the echelon index (i = [R, W, D]; R: retailer, 

W: wholesaler, D: distributor) in a supply chain, and i = M for the market index. 
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Figure 4. Modeling characteristics for a single replenishment cycle at echelon i 

 

6.1 Definitions and notation 

 

The cycle length is given by the replenishment order time interval 𝑂𝑇𝑖. Definitions and notation 

used in the model are defined as below. The six first elements are part of the data.  

 Di: annual demand at echelon i; D1 = market demand 

 ri: inventory carrying cost rate in % per unit per period at echelon i (ri ≥ r i+1) 

 vi: value of a single unit in inventory at echelon i  

 Bi: backorder cost per unit per period at echelon i  

 Fi: fixed order cost at echelon i  

 𝑂𝐼0
𝑖 : initial on-hand inventory at time 0 

 OQi: mean order quantity placed to supplier i+1 

 OTi: mean time interval between two consecutive orders placed to supplier i+1 

 

For cycle j (with j > 0), where a cycle is defined as max (𝑂𝑇𝑖, 𝑂𝑇𝑖−1), we define: 

 𝑂𝐼𝑡
𝑖𝑗

: inventory at period t within cycle j at echelon i  

 𝐼𝐶𝑡
𝑖𝑗

: inventory carrying cost for period t within cycle j at echelon i  

 Sij: inventory level at the end of cycle j (which can be negative) at echelon i 

 dTij: time between the beginning of cycle j and the first inventory level change of cycle 

j at echelon i 

 ICCij: inventory carrying cost per cycle j at echelon i 

 OCCij: ordering cost per cycle j at echelon i 

 SCCij: backorder cost per cycle j at echelon i 

 Nic: number of full replenishment cycles per year at echelon i 

 

Let NCi be a quantity defined as Di / OQi. The number of full replenishment cycles per year is 

then the truncated value of NCi, and the annual cycle cost is given in Equation (2).  

 

Si(j-1)+OQi
	

OTi	

OQi-1	

OTi-1	

Period:	1	 2	 3	 4	 5	 6	

Echelon	i,	cycle	j	Oit
ij	

Sij	

dTij	
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Let 
j  be the truncated value of (OTi – dTij)/ 𝑂𝑇𝑖−1. In Figure 4, we compute 

j as follows:  

(5.3 – 0.5) / 1, which is then truncated at 4. The value 
j corresponds to the number of full 

periods with duration 𝑂𝑇𝑖−1. Three types of time period have to be considered: (1) t = 1: the 

first time period of duration dTij is likely to be smaller than 𝑂𝑇𝑖−1; (2) 2 ≤ t ≤ j + 1: each of 

the intermediate time periods is equal to 𝑂𝑇𝑖−1; (3) t = j + 2: period is again likely to be 

smaller than 𝑂𝑇𝑖−1.  

 

6.2 Optimization problem statement and cost computation 

 

For echelon i, we have to optimize 𝑂𝑄𝑖 and 𝑂𝑇𝑖 in order to minimize the annual costs 𝐴𝐶𝑖, 

which consists of three components: inventory carrying costs 𝐼𝐶𝑖 , ordering cost 𝑂𝐶𝑖 , and 

shortage costs 𝑆𝐶𝑖. The three cost components 𝐼𝐶𝐶
𝑖𝑗

, 𝑂𝐶𝐶
𝑖𝑗

 and 𝑆𝐶𝐶
𝑖𝑗

 are first computed and 

later cumulated according to Equation (2) to obtain the total cost per year 𝐴𝐶𝑖. The inventory 

carrying cost per cycle is given by Equation (3).  

 

 
 

The remaining inventory at the end of cycle j is 𝑆𝑖𝑗 = 𝑂𝐼
𝜏𝑗+2

𝑖𝑗
. The initial conditions are: 

𝑑𝑇𝑖(𝑗=1) =
1

2
𝑂𝑇𝑖−1 , and 𝑆𝑖(𝑗=0)  is equal to a given value. The ordering cost per cycle is 

𝑂𝐶𝐶𝑖𝑗 =  𝐹𝑖. The backorder cost per cycle is given in Equation (6).  

 

 
 

6.3 Optimization heuristics 

 

As the demand rate is constant (fixed OQ and OT), assumption (AII) implies OQi ≥ OQi-1. Also, 

as the case of a decentralized supply chain is considered, a single model identical for all 

echelons is sufficient. To simplify the notation, the subscript i will therefore not be used in this 

subsection. The model and the optimization procedure are used to answer to the following 

questions: (Q1) What is the optimal OT for a given OQ? (Q2) What are the optimal OT and 

OQ when both are variable? The optimization procedures for these two questions are described 

below.  

Procedure OPTIM(OT|OQ) aims at finding the OT value which minimizes the annual costs if 

OQ is imposed. Starting from a very small value of OT, its main idea is to evaluate the most 

relevant and promising OT values, with small steps of ΔT = 1/100 day ≈ 14 minutes. Smaller 
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steps are not relevant from a practical standpoint. Indeed, one can reasonably assume that a 

decision maker will not reconsider placing an order more often than every 15 minutes.  

 

Procedure OPTIM(OQ) aims at finding the OQ value which minimizes the annual costs. 

Starting from the smallest reasonable value, its main idea is to evaluate the most relevant and 

promising OQ values (with small steps of ΔQ = 100 units), for which the best associated OT 

values can be computed with Procedure OPTIM(OT|OQ). Again, smaller steps for ΔQ are not 

relevant, as one can reasonably assume that the smallest possible quantity to order cannot be 

below a threshold of 100 units.  

 

The two above procedures were implemented in C and their computing time is negligible. As 

it is always possible to use smaller ΔQ and ΔT increments (although totally unrealistic from a 

practical standpoint), we cannot formally assume that the provided solutions are mathematically 

optimal. But as the considered increments ΔQ and ΔT have the smallest possible realistic values, 

the two above procedures are likely to find optimal solutions from a managerial point of view, 

and within a faction of second. Note that additional experiments were performed with smaller 

unrealistic increments, but without reducing the costs by more than 0.1%. Because of such an 

efficiency, there is no need to investigate for more refined or quicker optimization approaches.  

 

Procedure OPTIM(OT | OQ) for a given value of OQ (for question (Q1)) 
 

Let AC(OT|OQ) be the annual cost function assuming OQ is given, the values of OQ being 

those observed in the experiment (see Table 1). A time increment (between two orders) of 0.01 

day (≈ 14 minutes) is chosen. This value corresponds to a real time interval ≈ 0.3 second for 

the subjects and is therefore considered to be small enough. 

 

 
Initialization 

 set OT = 15 minutes (smallest reasonable time interval between 2 orders) 

 choose a value for ΔT (time increment between 2 orders, e.g. 1/100 day) 

 compute AC(OT|OQ) 

 set OT* = OT and F* = AC(OT|OQ) (storage of the best OT and cost values) 

 

While AC(OT | OQ) < 2F*, do: (i.e., while the annual cost is not above a reasonable threshold) 

 set OT = OT + ΔT 

 compute AC(OT|OQ) 

 if AC(OT|OQ) < F*, set OT* = OT and F* = AC(OT*|OQ) 

 

Output: OT* and F* = AC(OT*|OQ), respectively denoted OT*(OQ) and AC[OT*(OQ)]. 

 

 

 

 

 

 

 

 

 

Procedure OPTIM(OQ) (for question (Q2)) 

 

 
Initialization 
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 set OQ = OQ(i-1) (we start with the smallest reasonable order quantity) 

 choose a value for ΔQ (quantity increment of an order, e.g. 100 units) 

 perform OPTIM(OT|OQ) which returns OT*(OQ) and AC[OT*(OQ)] 

 set OQ* = OQ, OT* = OT*(OQ), F* = AC[OT*(OQ)] (store the best decisions and cost) 

 

While AC[OT(OQ)] < 2F*, do: (i.e., while the annual cost is not above a reasonable threshold) 

 set OQ = OQ + ΔQ  

 perform OPTIM(OT|OQ) to compute OT*(OQ) 

 if AC[OT*(OQ)] < F*, set OQ* = OQ, OT* = OT*(OQ) and F* = AC[OT*(OQ)] 

 

Output: OQ*, OT* and AC[OT*, OQ*]. 

 

 

 

6.4 Optimization results 

 

As for the experiment (see Subsection 4.2), for all echelons, the holding (resp. backorder, fixed 

ordering) cost is 0.75$/unit/day (resp. 1.5$/unit/day, 15$) and the initial on-hand inventory is 

9000 units.  

 

The OPTIM(OT|OQ) procedure is first applied to find the optimum time OT*  between orders 

for order quantities equal to the average values observed in the experiment OQ values in Table 

1. The results are indicated in Table 10, together with those of the experiment. As it can be 

observed, these two sets of values (OT* and OT) are very close, indicating that the subjects 

apply an ordering periodicity, which is well adjusted to the order quantity. However, the 

computed time interval OT* are systematically, even if slightly (approx. 2%), larger than the 

experimental values OT. These larger OT* values lead to an increase of the backorder cost, but 

to a very significant decrease of the inventory carrying cost and total cost (25% to 55%). 

 

 
Table 10. Computed results obtained using the OPTIM(OT|OQ) procedure for OQ values equal to 

experimental average order quantities 

 Distributor Wholesaler Retailer Market 

Experimental OQ (= average in Table 1) 5877 4935 3022 1508 

Experimental OT  (= average in Table 1) 47 39 24 12 

Computed order time interval OT* 47.48 39.96 24.48 12 

Inventory carrying cost ($) based on 

experimental order parameters (OQ,OT) 
3,513,302 4,418,792 3,657,628  

Inventory carrying cost ($) based on 

computed order parameters (OQ,OT*)  
2,266,992 1,918,365 1,569,683  

Shortage cost ($) based on experimental order 

parameters (OQ,OT) 
4,205 0 0  

Shortage cost ($) based on computed order 

parameters (OQ,OT*) 
385,776 141,230 82,867  

Total cost ($) based on experimental order 

parameters (OQ,OT) 
3,519,190 4,420,798 3,660,904  

Total cost ($) based on computed order 

parameters (OQ,OT*) 
2,654,452 2,061,600 1,655,826  

 

 

The results for OQ* and OT* obtained with OPTIM(Q) are reported in Table 11, together with 

the corresponding average experimental values OQ and OT. Recall that the computed OQ* and 

OT* values of Table 11 are those leading to the minimum total cost under assumption (AII). 
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With this constraint, it can be observed that the order policy used by the subjects in the 

experiment are not optimal, as order quantities and order time intervals are almost half of the 

computed values. The lower OQ and OT values lead to negligible backorder costs, but to a very 

significant increase of the inventory carrying costs and consequently of total costs (147% to 

253%). This observation is discussed in a more detailed way in the next section. 

 
Table 11. Computed results obtained using the OPTIM(OQ) procedure 

 

 Distributor  Wholesaler Retailer Market  

Experimental OQ (= average in Table 1) 5877 4935 3022 1508 

Computed order quantity OQ* 9635 8122 5708 1508 

Experimental OT (= average in Table 1) 47 39 24 12 

Computed order time interval, OT*  77.44 66.16 46.44 12 

Inventory carrying cost ($) based on 

experimental order parameters (OQ,OT) 

3,513,302 4,418,792 3,657,628  

Inventory carrying cost ($) based on 

computed order parameters (OQ*,OT*) 

1,877,624 1,555,181 1,257,592  

Shortage cost ($) based on experimental 

order parameters (OQ,OT) 

4,205 0 0  

Shortage cost ($) based on computed order 

parameters (OQ*,OT*) 

513,702 372,923 188,576  

Total cost ($) based on experimental order 

parameters (OQ,OT) 

3,519,190 4,420,798 3,660,904  

Total cost ($); based on computed order 

parameters (OQ*,OT*) 

2,392,364 1,929,323 1,447,902  

 

 

7. Discussion 

 

Among the limitations of this study, one could first mention that the students’ experiments are 

bounded by the lack of tacit knowledge, and do not accurately represent true decision-making 

and risk taking in the real world, whereas the normative model was designed with expert 

knowledge. Second, even if the considered sample size (i.e., N = 12) could be pointed out as 

being rather small, it allows designing a first set of interesting conclusions. Consolidating these 

conclusions with a larger team of experts, and with various supply chain structures and demand 

patterns, is left as an avenue of research resulting from – and motivated by – this first study.    

 

Previous studies of the ordering behavior in decentralized supply chains focus on order quantity 

only. This work allowing both order time and order quantity to vary constitutes an extension 

and allows an interesting comparison. The first significant conclusion is that in both cases (with 

or without time related decision), the order quantity OQ used by subject increases while moving 

upstream along the supply chain. The second meaningful observation is that, when the time 

interval OT is part of the replenishment decision, it increases similarly to the order quantity in 

case of a constant demand rate. 

 

Order amplification is caused by both structural and behavioral reasons. Demand signal 

processing, order batching, price variation, and inventory rationing are structured 

characteristics that cause demand amplification (Lee et al., 1997). Decision maker bounded 

rationality to account for time lags and previous decisions feedbacks (Sterman, 1989), and 

uncertainty of individual decisions for the other supply chain members (Croson et al., 2012) are 

behavioral characteristics that amplify order. In this study, unknown market demand leads the 

subjects to uncertain forecasts that cause demand signal processing. Along with this structural 
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reason, both above-mentioned behavioral causes play a role in the order amplification at each 

level of supply chain as one moves upstream from the market to distributor.  

 

The results of the normative model show that the time intervals OT used by subjects are almost 

optimally adapted to their order quantities OQ. Therefore, subjects adjust order quantity and 

time interval in order to obtain, on average, a supply rate close to the average demand rate. Note 

that the objective function AC(OT|OQ) is convex in OT. However, comparing the experimental 

results to the normative model (Table 10) shows that the chosen OT of the subject policy is not 

optimally adjusted to OQ. Indeed, the normative model indicates that a slightly longer 

(around 1%) time interval OT leads to higher shortage costs, but much lower inventory carrying 

and total costs. This reveals that the subject risk reluctance is detrimental as it avoids reaching 

the optimal OT for a given OQ. 

 

Furthermore, the results obtained from the normative model indicate that subjects do not use 

the best possible combination of (OQ, OT) as the best values found by the optimization 

heuristics (OQ*, OT*) are roughly twice the experimental ones. It must be noticed here that the 

objective function AC(OT, OQ) is not convex in OQ. The subject policy, with lower OQ and 

OT, leads to lower backorder costs, but much higher inventory carrying cost and consequently 

for total costs (147% to 253%). The use of order time intervals and order quantities lower than 

optimal can be attributed to either a misjudgment of the relative importance of the cost 

components and/or to a need for action (i.e., placing an order). Furthermore, the non-optimal 

adjustment of (OQ, OT) can be explained, as previously, by a reluctance of subject to take the 

risk of shipment delay (i.e., backorder cost). Note that the replenishment policy leading to the 

lowest possible total cost requires values of (OQ, OT) that are too low to be practically 

implemented. They are significantly lower than the market ones.  

 

The analysis of the results of variability of order quantity and order time intervals suggests that 

there is a range of low, medium, and high variability on the subjects’ decision indicators. Based 

on the observations in Table 4, the majority of retailers (67%) have medium variability of their 

replenishment decision indicators. Wholesalers behave differently. 17% of wholesalers have 

low variability of their replenishment indicators, whereas 33% of them introduce medium 

variability in their ordering behavior. Some of the distributors (25%) exhibit a medium 

variability, whereas the majority of them introduce high variability in their replenishment 

decision indicators. Although there are three subjects (R12, W10, D10) who follow the fixed 

order quantity and variable order time intervals ordering behavior, the majority of the subjects 

(91%) have variable order quantity and variable order time intervals ordering behavior. 

Furthermore, on the echelon level, results show that retailer has low variability on order 

quantity and medium variability on order time intervals. Wholesaler shows medium variability 

on both order quantity and order time intervals. Distributor has a medium variability on order 

quantity and high variability on order time intervals. Hence, results from the both individual 

and echelon levels confirm that the variability of order quantity and order time intervals tends 

to increase while moving upstream from the market along the supply chain.  

 

One interesting point remains to be discussed further: why do wholesalers behave differently? 

Prior work (e.g., Baganha and Cohen, 1998; Blinder 1981; Cachon et al., 2007; Rong et al., 

2008; West, 1986) has highlighted that the variability of order quantity increases from retailer 

to wholesaler and decreases from wholesaler to manufacturer. This study confirms the 

difference in wholesaler ordering behavior, but it distinguishes from previous works since we 

observe a constant increase in the variability of order quantity, but a decrease in the variability 

of the wholesaler order time intervals at the echelon level. Moreover, at the individual level 
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analysis, half of wholesalers (50%) in Table 3 and Table 4 are placed on the low and medium 

variability classification. These evidences, in connection with the previous discussion, reveal 

that wholesalers inject variability in order quantity and smoothens order time intervals under 

continuous review. Therefore, wholesalers perform a smoothing role in the middle of supply 

chain. 

 

Subjects hold on-hand inventory to guard against unknown customer orders and unreliable 

supplier shipment. Since there is no price variation in our study, the main reason to hold on-

hand inventory is to avoid stock-out and incurring backorder costs. The higher variability of 

the order quantity and order time intervals may lead to higher costs for both inventory manager 

and his/her supplier. Inventory managers’ on-hand inventory depends on the on-hand inventory 

availability at the upstream supplier, and on the time delays for ordering and shipment. As 

shown in Table 7, larger order quantities and longer order time intervals increase inventory 

manager holding and backorder costs. The other important point is that replenishment policy 

of the most upstream echelon is decisive regarding the total cost of supply chain (see Tables 5 

and 6). The larger order quantity of distributor, the larger total costs of wholesaler and retailer. 

This observation also holds for distributor’s lengthened order time intervals.  

 

Results in Table 8 suggest that a reduction in the variability of order quantity specifically for 

upstream echelons could help the distributor to cut unnecessary backorder and holding costs. 

Costs are more correlated to upstream echelons due to the higher variations of replenishment 

decision indicators. This observation is important, as it was somewhat unexpected. Indeed, the 

literature usually looks downstream for the source of variability and fluctuations. Results in 

Table 9 show that the high variability of wholesaler replenishment decision indicators increases 

distributor backorder cost. Also, high variability of retailer order quantity increases wholesaler 

holding cost. Therefore, results suggest that reduction in the variability of customer order 

quantity significantly decreases the supplier total cost. 

 

 

8. Conclusion 

 

This research examines the behavior of inventory managers under continuous review in 

decentralized supply chain. A specific experiment is designed to control the environment and 

avoid possible perturbations. The experimental setting is characterized by unknown market 

demand and local information availability. This research contributes to inventory replenishment 

literature by revealing (i) the change in order time intervals along the supply chain, (ii) the 

smoothing role of wholesalers in the decentralized supply chain, (iii) the influence of inventory 

managers’ replenishment decisions on their own and the other echelons’ costs. 

 

This work purposely focuses on individual and echelon levels. One possible extension would 

be studying the aggregated supply chain behavior. This study uses student subjects; this should 

not constitute a limitation according to (e.g., Croson and Donohue, 2006; Holweg and Bicheno, 

2002) who report no significant difference between students and professional subjects. 

Nevertheless, the authors have experienced situations in which professional do tend to behave 

differently from students. Thus, it would be worth investigating potential deviations between 

these two categories. 

 

A normative model, along with optimization procedures, and using the same set of decision 

variables as in the experiment is implemented to serve as a reference for the evaluation of 

human decision behavior. It is observed that human replenishment decisions are not perfectly 
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optimal. The difference indicates a risk reluctance that leads to inventory larger than optimal.  

Consequently, human decision makers do not reach the optimal balance between back-order 

cost and inventory carrying cost.   

 

Future research in this area may examine the robustness of this study’s results in different 

supply chain contexts and with a larger number of teams. Different experimental settings such 

as known demand to remove demand signal processing from structural causes of order 

amplification could help understanding the behavioral factors under continuous review. The 

experimental platform used in this research is richer in many ways than the computerized beer 

game. It allows us to systematically study the manager inventory replenishment decisions under 

continuous review. Thus, allowing communication and information sharing between supply 

chain members in the experiment could also extend this work. 

  



20 
 

References 

 

[1] Arguilaget Montarelo, L., Glardon, R., Zufferey, N. 2017. A Global Simulation-

Optimization Approach for Inventory Management in a Decentralized Supply Chain, 

Supply Chain Forum: An International Journal, 18 (2), 112-119. 

[2] Aviv, Y. 2002. A Time Series Framework for Supply Chain Inventory Management. 

Operations Research, 51, 210-227. 

[3] Badinelli, R., D. 1992. A Model for Continuous-Review Pull Policies in Serial 

Inventory Systems. Operations Research, 40, 142-156.  

[4] Baganha, M. P., Cohen, M. A. 1998. The stabilizing effect of inventory in supply 

chains. Operations Research, 46 (3), 72-83. 

[5] Bendoly, E., Croson, R., Goncalves, P., Schultz, K. 2009. Bodies of Knowledge for 

Research in Behavioral Operations. Production and Operations Management, Volume 

19, 434-452. 

[6] Bendoly, E., Donohue, K., Schultz, K. 2006. Behavior in Operations Management: 

Assessing recent findings and revisiting old assumptions. Journal of Operations 

Management, 24, 737-752. 

[7] Blinder, A.S. 1981. Retail inventory behavior and business fluctuations, Brooking 

Papers on Economic Activity, 2, 443-520. 

[8] Bolton, G. E. Katok, E. 2005. Learning-by-doing in the newsvendor problem. 

Discussion paper, Penn State University.  

[9] Cachon, G. P., Randall, T., Schmidt, G. M. 2007. In search of the bullwhip effect. 

Manufacturing & Service Operations Management, 9(4), 457-479. 

[10] Carle, M.-A., Martel, A., Zufferey, N. 2012. The CAT Metaheuristic for the Solution 

of Multi-Period Activity-Based Supply Chain Network Design Problems, 

International Journal of Production Economics 139 (2), 664-677. 

[11] Chatfield, D. C., Kim, J. G., Harrison, T. P., Hayya, J. C. 2004. The bullwhip effect—

impact of stochastic lead time, information quality, and information sharing: A 

simulation study. Production and Operations Management, 13(4), 340-353. 

[12] Chen, F. 1999. Decentralized supply chains subject to information delays. 

Management Science, 45 (8), 1076-1090. 

[13] Clark, A. Scarf, H. 1960, Optimal Policies for a Multi-Echelon Inventory Problem, 

Management Science, 6, 475- 490. 

[14] Croson, R., Donohue, K. 2002. Experimental Economics in Supply Chain 

Management: An Experimental Study. Interfaces, 32, 74-82. 

[15] Croson, R., Donohue, K. 2003. Impact of POS data sharing on supply chain 

management: an experimental study. Production and Operations Management, 12, 1–

11. 

[16] Croson, R., Donohue, K. 2006. Behavioral causes of the bullwhip effect and the 

observed value of inventory information. Management Science, 52, 323-336. 

[17] Croson, R., Donohue, K., Katok, E., Sterman, L.D. 2012. Order Stability in Supply 

Chains: Coordination Risk and the Role of Coordination Stock. In Working Paper, 

Smeal College of Business, Penn State. State College, PA. 

[18] De Bodt, M. A., Graves. S. C. 1985. Continuous-Review Policies for a Multi-Echelon 

Inventory Problem with Stochastic Demand. Management Science, 31, 1286-1299. 

[19] Dogan, G. Sterman, J.D. 2005. When less leads to more: Phantom ordering in the beer 

game. Proceedings of the 2005 International System Dynamics Conference, Boston, 

MA. 



21 
 

[20] Dogan, G. Sterman, J.D. 2006. I’m not hoarding, I’m just stocking up before the 

hoarders get here Behavioral causes of phantom ordering in supply chains, MIT Sloan 

School of Management, Working paper. 

[21] Federgruen, A., Zipkin, P. 1984. An efficient algorithm for computing optimal (s, S) 

policies. Operations Research, 32(6), 1268-1285. 

[22] Forrester, J. W. 1961. Industrial dynamics (Vol. 2). Cambridge, MA: MIT press. 

[23] Gino, F., Pisano, G. 2008. Toward a Theory of Behavioral Operations. Manufacturing 

& Service Operations Management, 10(4), 676-752. 

[24] Grubbström, R. W., Wikner, J. 1996. Inventory trigger control policies developed in 

terms of control theory. International Journal of Production Economics, 45 (1), 397-

406. 

[25] Gupta, S., Steckel, J. and Banerji, A. 2001. Dynamic decision making in marketing 

channels: An experimental study of cycle time, shared information and customer 

demand patterns (A. Rapoport, R. Zwick, Eds.). Experimental Business Research. 

Kluwer Academic Publishers, Boston, MA. 

[26] Holweg, M., Bicheno, J. 2002. Supply chain simulation – a tool for education, 

enhancement and endeavor. International Journal of Production Economics, 78 (2), 

163-175. 

[27] Kaminsky, P., Simchi-Levi, D. 1998. A new computerized beer game: A tool for 

teaching the value of integrated supply chain management. Global Supply Chain and 

Technology Management (Hau Lee and Shu Ming Ng, Eds.). POMS Series in 

Technology and Operations Management, 216-225. 

[28] Katok, E., 2011. Using laboratory experiments to build better operations management 

models. Foundations and Trends in Technology, Information, and Operations 

Management, 5 (1), 1–86. 

[29] Kimbrough, S. O., Wu, D. J., Zhong, F. 2002. Computers play the beer game: can 

artificial agents manage supply chains?. Decision support systems, 33(3), 323-333. 

[30] Lee, H. L., Billington, C. 1993. Material management in decentralized supply chains. 

Operations research, 41(5), 835-847. 

[31] Lee, H. L., Padmanabhan, V., Whang, S. 1997. Information distortion in a supply 

chain: the bullwhip effect. Management Science, 43(4), 546-558. 

[32] Loch, C. H., Wu, Y. 2007. Behavioral Operations Management, Operations 

Management, vol. 1, no. 3, pp 121-232.  

[33] Machuca, J.A.D., Barajas, R.P. 2004. The impact of electronic data interchange on 

reducing the bullwhip effect and supply chain inventory costs. Transportation 

Research Part E, 40, 209-228. 

[34] Montreuil, B., Brotherton, E., Glardon, R., Yoo, M, J., Elamiri, Y., Borter, A., 

Morneau, A., Naciri, S. Jermann, P. 2008. Experiences in Using XBeer Game Virtual 

Gaming for Learning Supply Chain Management, 2nd European Conference on 

Games Based Learning, Which city, Spain, 16-17 October. 

[35] Oliva, R., Gonçalves, P. 2007. Behavioral Causes of the Bullwhip Effect: “Satisficing” 

Policies with Limited Information Cues. Under revision for resubmission to Journal of 

Operations Management. 

[36] Respen, J., Zufferey, N., Wieser, Ph. 2017. Three-level inventory deployment for a 

luxury watch company facing various perturbations, Journal of the Operational 

Research Society, 68 (10), 1195 – 1210.  

[37] Rong, Y., Shen, Z., J., M., Snyder, L., V. 2008. The Impact of Ordering Behavior on 

Order-quantity. Variability: A Study of Forward and Reverse. Bullwhip Effects. 

Flexible Services and Manufacturing Journal, 20, 95-124. 



22 
 

[38] Schmidt, C. P., Nahmias, S. 1985. Optimal policy for a two-stage assembly system 

under random demand. Operations Research, 33 (5), 1130-1145. 

[39] Schweitzer, M. E., Cachon, G. P. 2000. Decision bias in the newsvendor problem with 

a known demand distribution: Experimental evidence. Management Science, 46 (3), 

404-420. 

[40] Silver, E. A., Zufferey, N. 2011. Inventory Control of an Item with a Probabilistic 

Replenishment Lead Time and a Known Supplier Shutdown Period, International 

Journal of Production Research 49 (4), 923-947 

[41] Simon, H. A. 1952. On the application of servomechanism theory in the study of 

production control. Econometrica: Journal of the Econometric Society, 247-268. 

[42] Simon, H. A. 1969. The Sciences of the Artificial. The MIT Press, Cambridge. 

[43] Spearman, C. 1904. The proof and measurement of association between two things. 

The American Journal of Psychology, 15 (1), 72-101. 

[44] Steckel, J.H., Gupta, S., Banerji, A. 2004. Supply chain decision making: will shorter 

cycle times and shared point-of sale information necessarily help. Management 

Science, 50, 458–464. 

[45] Sterman, J. D. 2000. Business dynamics: systems thinking and modeling for a complex 

world (Vol. 19). New York: Irwin/McGraw-Hill. 

[46] Sterman, J.D. 1989. Modeling of Managerial Behavior: misperceptions of feedback in 

a dynamic decision making experiment. Management Science, 35, 321-339. 

[47] Thevenin, S., Zufferey, N., Widmer, M. 2015. Metaheuristics for a Scheduling 

Problem with Rejection and Tardiness Penalties, Journal of Scheduling 18 (1), 89-105. 

[48] Thevenin, S., Zufferey, N., Widmer, M. 2016. Order acceptance and scheduling with 

earliness and tardiness penalties, Journal of Heuristics 22 (6), 849-890.  

[49] Towill, D. R. 1991. Supply chain dynamics. International Journal of Computer 

Intergrated Manufacturing, 4, 197-208. 

[50] Vassian, H. J.1955. Application of discrete variable servo theory to inventory control. 

Journal of the Operations Research Society of America, 3, 272–282. 

[51] Voldrich, S., Wieser, Ph., Zufferey, N. 2017. Competitive and Timely Food Supply 

combined with Operational Risk, Supply Chain Forum: An International Journal, 18 

(1), 2-6. 

[52] West, K. D. 1986. A Variance Bound Test of the Linear Quadratic Inventory Model. 

Journal of Political Economics, 94 (2), 374- 401. 

[53] Wikner, J. Towill, D.R. Naim. M. 1991. Smoothing supply chain dynamics. 

International Journal of Production Economics, 22, 231-248. 

[54] Wu, D.,Y. Katok, E. 2006. Learning, communication, and the bullwhip effect. Journal 

of Operations Management, 24, 839-850. 


