000002473 001__ 2473
000002473 005__ 20181005163957.0
000002473 022__ $$a0720-728X
000002473 0247_ $$2DOI$$a10.1007/s00591-017-0209-0
000002473 037__ $$aARTICLE
000002473 041__ $$aeng
000002473 245__ $$aHow Bürgi computed the sines of all integer angles simultaneously in 1586
000002473 260__ $$c2018
000002473 269__ $$a2018-03
000002473 300__ $$a20 pages
000002473 506__ $$avisible
000002473 506__ $$d2019-03-31
000002473 520__ $$9eng$$aWe present an algorithm discovered by Jost Bürgi around 1586, lost until 2013, and proven in 2015. Bürgi’s method needs only sums of integers and divisions by 2 to compute simultaneously and with any desired accuracy the sines of the nth parts of the right angle. We explain why it works with a new proof using polygons and discrete Fourier transforms.
000002473 540__ $$aLa publication respecte les règles concernant l’utilisation du nom HES-SO
000002473 546__ $$aEnglish
000002473 592__ $$aHEI VS HES-SO Valais-Wallis - Haute Ecole d'Ingénierie
000002473 592__ $$bInstitut Systèmes industriels
000002473 592__ $$cIngénierie et Architecture
000002473 65017 $$aIngénierie
000002473 6531_ $$9eng$$aJost Bürgi
000002473 6531_ $$9eng$$asine table
000002473 6531_ $$9eng$$adiscrete Fourier transformation
000002473 6531_ $$9eng$$afinite difference
000002473 6531_ $$9eng$$aplanar polygon
000002473 6531_ $$9eng$$aNapoleon’s theorem
000002473 6531_ $$9eng$$aPetr–Douglas–Neumann theorem
000002473 655__ $$ascientifique
000002473 700__ $$aNicollier, Grégoire$$uSchool of Engineering, HES-SO Valais-Wallis, HEI, HES-SO // University of Applied Sciences Western Switzerland
000002473 773__ $$g2018, 65, 1, pp. 15-34$$tMathematische Semesterberichte
000002473 8564_ $$s2425208$$uhttp://hesso.tind.io/record/2473/files/Nicollier_2018_Buergi.pdf
000002473 909CO $$ooai:hesso.tind.io:2473$$pGLOBAL_SET$$pDoc_type_Articles
000002473 906__ $$aGREEN
000002473 950__ $$aI2
000002473 980__ $$ascientifique