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Abstract: Consumer behaviour is often complex and even sometimes not economically rational.
Wrongly, the first techno-economic energy planning models assumed the economic rationality
hypothesis and, therefore, represented consumers’ behaviour incorrectly. Nevertheless, the current
trend is to couple these models with behavioural approaches that were specially developed to describe
the real consumer choices. A novel approach was recently proposed, where a classical energy model
is coupled with a share of choice model. This new approach has however two weaknesses. First,
the share of choice increases the computational complexity as it necessitates additional binary
variables for the modelling. Second, for complex models, the inclusion of the share of choice can lead
to non-linearity and hence to severe computational problems. In the present paper, we propose to
improve this method by externalizing the share of choice. Doing so, the number of binary variable
will be reduced and the linearity property will be kept even for complex models.

Keywords: consumer behaviour; energy and environmental planning model; mathematical
programming; optimization; share of choice model;, hybrid energy model; behavioural
operational research

1. Introduction

In the 1970s, the first oil shock followed by a second forced governments and agencies to reconsider
their energy policies as they were too dependent on oil. In this context, decisions makers required
the help of energy models in order to evaluate the economic impact of the policies they envisaged to
implement [1]. As it was a vital issue, this contributed to the rapid development of energy modelling [2].
Two decades later, while the o0il shocks were a distant memory, the interest in energy modelling
decreased. However, at the same time, in order to fight against global warming, countries envisaged
reducing their greenhouse gas emissions, which led, among others, to the Kyoto Protocol and later the
Paris Agreement [3,4]. Consequently, after a small stagnation, a net regain of interest in energy models
arose as the flourishing literature shows (see for example [5-7] for recent reviews).

Put simply, at the beginning of the development of energy models, two approaches were
envisaged. On one side, engineers built bottom-up models driven by technologies, whereas on the other
side, economists built top-down models driven by aggregate macroeconomic variables. The family of
models that were originally bottom-up includes, among others, MARKAL (Market Allocation) [8,9] and
TIMES (The Integrated MARKAL-EFOM System) [10,11] developed under the aegis of the International
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Energy Agency; MESSAGE (Model for Energy Supply Strategy Alternatives and their General
Environmental Impact) [12] developed by the International Institute for Applied Systems Analysis;
and OSeMOSYS (Open Source Energy Modelling System) [13,14] a quite recent open source model
that has spread rapidly since its launch. The top-down family is comprised of, among others, DICE
(Dynamic Integrated Climate-Economy) and RICE (Regional Integrated Climate-Economy) [15,16]
developed by Nordhaus or EPPA (Emissions Prediction and Policy Analysis) [17] developed at the
MIT Joint Program on the Science and Policy of Global Change. Of course, both approaches have
their strengths and weaknesses. The main weakness of the top-down approach is the lack of precision
in the technology description. It makes policies grounded on aggregate technologies that do not
represent the reality in the field. However, this approach has the advantage of proposing overall
and integrated policies. For the bottom-up approach, relying on perfect economy rationality axioms
(perfect economy rationality axioms should be read in the sense that each actor maximizes his/her
long-term profit), which do not correspond to the actual consumer behaviour, is a significant weakness
since the resulting policies are not practical for decision making. This approach has, on the other
hand, the advantage of handling a huge amount of technical data, which makes possible a direct
link between the proposed policy and the decision maker. The debate between both models was
mainly focused on the energy efficiency gap, i.e., the unexploited potential for energy efficiency that is
economically rational [18-21]. Indeed, bottom-up models tend to underestimate the energy efficiency
gap, whereas top-down models tend to overestimate it [22]. More generally, the ideal energy model
should perform well with regard to three criteria : the technological explicitness, the microeconomic
realism and the macroeconomic completeness [22]. As a matter of fact, hybrid models, which integrate
both top-down and bottom-up logics, are the only ones that perform well along all three dimensions,
and nowadays, the debate between top-down and bottom-up models is obsolete as there is a consensus
for hybrid modelling. This context stimulated the development of Integrated Assessment Models
(IAM) that combine knowledge from different domains into a single framework [23]. The family of
IAM includes, among others, IGSM (Integrated Global System Model) [24,25] developed at the MIT
Joint Program on the Science and Policy of Global Change; WEM (World Energy Model) [26] developed
at the International Energy Agency; or GCAM (Global Change Assessment Model) [27,28] developed
at the University of Maryland. In this trend to combine techniques from different domains, it is worth
noting the increasing use of behavioural economics approaches to understand consumers’ real choices
regarding energy consumption (see for instance [29-33] for recent applications). For the modelling
of the production, transformation and distribution of energy, techniques coming from the domain of
the supply chain are widely used. Among the recent publications concerning supply chain optimization
with applications to energy, we can mention: [34], where the production of biogas and electricity is
optimized; [35] for an optimization of district heating systems with thermal energy storages; [36],
where the extraction and transformation of shale gas into gas and electricity is optimized; [37] for an
optimization of the transformation of biomass into heat and electricity. For recent reviews, we can
mention, among others: [38], where they investigate the new methods of operations research in supply
chain optimization; [39] for a focus on supply chain network design under uncertainty; and [40], where
they concentrate on sustainable supply chain management.

In the 1950s and 1960s, the development of mathematical psychology [41-43] permitted making a
breakthrough in the modelling of consumers’ behaviour, which opened the door to the development
of conjoint analysis. Since the first approach to describe consumers’ preference [44], conjoint analysis
has become an important and popular tool in marketing science (see [45] for a recent literature
review). The first product design optimizer using the paradigm of conjoint analysis was proposed
by [46]. This model, which will be named later the share of choice, maximizes the share of preference
and is formulated as a mixed integer linear program. In order to take into consideration some
production aspects, [47] augmented the share of choice model. Inspired by this work, to take
into account in a realistic way the production constraints, [48] proposed to couple the share of
choice model with a production model. The method was then used to solve problems in different
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domains [49-51]. Following this idea, [52] combined a classical energy model with the share of choice
model. This approach, which combines a behavioural method with operational research, has however
two drawbacks. First, the share of choice model contains many additional binary variables, which,
in turn, increases the computational complexity of the energy model. Second, the linearity property is
not preserved for models where the market share may vary over time. Indeed, to couple the share of
choice model with the energy model, decision variable from this latter model have to be multiplied by
market shares (i.e., variables), which leads to non-linear modelling.

The present paper proposes an extension of this method by externalizing the share of choice
model. Our new approach enables us to bypass both drawbacks. First, it reduces the number of
binary variables and, consequently, the computational complexity. Second, the linearity property is
preserved even for models where the market share may vary over time. For instance, contrary to the
old approach, this new approach allows one to model cases where the consumers’ behaviour evolves
in time. Practically, this method has three steps. Firstly, using standard techniques of conjoint analysis,
the consumers’ utility functions are estimated with a survey. Secondly, with the help of a share of
choice model, the consumers’ behaviour is quantified into market share data. Thirdly, the market
shares are input into the energy model using a specific modelling. Figure 1 schematizes the approach
presented in this paper as opposed to the one proposed in [52].

Sociological
survey

Technical Sociological Technical Share of

information survey information Choice

Energy model

Metamodel

Figure 1. Coupling techno-economic energy models with behavioural approaches. On the left,
the method proposed in [52]. On the right, the method proposed in the present paper.

To illustrate how the proposed method can be implemented, we use a case study. This case study
explores the consumer preferences between fluorescent and Light-Emitting Diode (LED) bulbs under
different government policies and combines the energy model UTOPIA [13] and a survey evaluating
the consumers’ preference between both bulbs [52]. The aim of this case study is not to provide the
reader with elements of energy policy, but rather to demonstrate the feasibility of the concept first and
then to show what kinds of results the method can offer.

The paper is organized as follows. In Section 2, we first introduce the case study, which will
illustrate the method. Then, we present the method that externalizes the share of choice model from
the techno-economic model. In Section 3, we present and discuss the case study results. Finally,
in Section 4, we conclude and give further research directions.
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2. Proposed Method

2.1. The Case Study

The principal aim of this case study is to show how the method proposed in the present paper can
be implemented. For this purpose, we use the same case study as [52]. This case study explores
the consumer preferences between fluorescent and LED bulbs under two different government
policies, namely an information campaign and a subvention campaign promoting the more efficient
LED bulb. Case studies focusing on light bulbs are very practical to illustrate in a simple way
economic irrationality. Indeed, if consumers were rational, they would only buy LED bulbs and not
fluorescent bulbs, which is obviously not the case in reality. The case study combines the energy
model UTOPIA [13] and a survey evaluating the consumers’ preference between fluorescent and LED
bulbs [52]. UTOPIA describes the complete energy system of a fictive country and is implemented
with the open source code OSeMOSYS. The survey was conducted in Romania and estimates the
Willingness To Pay (WTP) for the LED bulbs before an information campaign, as well as the WTP after
an information campaign. Details about the case study and the survey can be found in [52].

2.2. Externalizing the Share of Choice

The method implemented to externalize the share of choice has two steps. First, using the share of
choice model, the market share is computed for all possible designs (in our example, the designs of all
possible campaigns). Second, these market shares are introduced in the energy model as parameters.
To do so, different constraints are added to the energy model, in order to include the share of choice
information. We will describe this modelling by taking a simple example as an illustration. Suppose
we have to design a service with only one salient attribute and where a single attribute level must be
chosen. The possible levels for this attribute are denoted with the discrete parameter i € I. We denote
with (i) the market share, given the design i is chosen. The market shares /(i) are calculated directly
from the survey based on conjoint analysis techniques. Then, we incorporate in our model the binary
decision variables k(i), where k(i) = 1 if the service design takes 7 as the attribute level and k(i) = 0
otherwise. Of course, as one and only one design must be chosen, we have to add the constraint
Y.i k(i) = 1. The market share writes then I = };I(i) - k(7). Unfortunately, except for static models,
the market share has to be multiplied with another variable, and we consequently lose the linearity
property. To avoid this issue, we propose an alternate solution. Suppose that in our model, we have
to compute p = n - I, where n is a variable. Instead of using this nonlinear equation, we will use the
following equations:

p < n-li)+M(1—-k(i)) Viel, 1)

p > n-l(i)—M(1-k(i) Viel, )

where M is a big number. Indeed, if i is not the chosen level, we have k(i) = 0, and
Equations (1) and (2) become:

p < n-li)+M Viel, 3)

> n-l(i)—M Viel 4)

If M is chosen big enough (i.e., M > max;(|n - [(i)])), these two constraints are never binding.
In contrast, if the chosen level is i, we have k(i) = 1, and Equations (1) and (2) become:

n-l(i) Viel, ©)
n-1(i) Viel, (6)

IV IA

p
p

which leads to the desired result preserving the linearity property.
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2.3. The Model

To take into account the consumers’ real preferences, we must convert the survey results into
data for the model. In our example, the only information needed is the share of consumers choosing
LED bulbs, given the policy chosen by the government. To keep the model as simple as possible,
we suppose that the policy and the proportion of LED buyers cannot vary throughout the time horizon.
Note that we could easily describe the more realistic case where the policy is not static and where the
effect of the campaigns follows a dynamic process with inertia and erosion.

Before starting, let us mention that the notations used throughout the paper are given in Table 1.

Table 1. Notation for data and variables.

Data Notation Notation in OSeMOSYS
Year, period yey y in YEAR

Information campaign level iel ¢ in CAMPAIGN
Subvention level ses s in SUBVENTION

Cost of the information campaign  ccam (i) COST_CAMPAIGNIc]
Subvention’s acceptance factor a ACCEPTANCE_SUBVENTION
Market share of LED bulbs I(i,s) SHARE]c,s]

Fluorescent bulb operational life t OperationalLife[,”RL1"]
LED bulb operational life tr OperationalLife[,”RL2"]
Big number M BIGM

Decision variable Notation Notation in OSeMOSYS
Information campaign level k(i) € {0,1} campaign]c]

Subvention level j(s) € {0,1}  subvention[s]

New capacity of fluorescent bulbs 11 (y) NewCapacity[,“RL1",y]
New capacity of LED bulbs na(y) NewCapacity[,“RL2",y]
Help variable Notation Notation in OSeMOSYS
Subvention’s cost Csub cost_subvention

Total LED bulbs bought z LED_bought

Though in our example, the choice for the information campaign is binary (we have either a
campaign or no campaign), we will describe here the general case, where different campaign levels
can be chosen. We denote with i the information campaign level and I the set of all possible campaign
levels, where i = 0 means no campaign is conducted. The choice of the campaign is described with
the binary variables k(i), where k(i) equals one if the chosen campaign level is i and zero otherwise.
Of course, one and only one level has to be chosen, which translates into Y ;c; k(i) = 1.

For the subvention level, we take discrete values ranging from zero (i.e., no subvention) to the
actual price of the LED bulb (i.e., LED bulbs are given for free). We denote with s the subvention level
and S the set of all possible subvention levels. The choice of the subvention level is described with
the binary variables j(s), where j(s) equals one if the chosen subvention level is s and zero otherwise.
Of course, one and only one level has to be chosen, which translates into Y ;.5 j(s) = 1.

We denote with y € Y the different possible periods in our model and with y the first period.
Subsequently, we will call the set Y the time horizon. Let 111 (i) represent the new capacity of fluorescent
bulbs and 15 (y) the new capacity of LED bulbs. Let cg,,}, be the cost of the subvention campaign. Our
model minimizes the overall cost for the society, and the subvention is paid by the government to
consumers. Therefore, what is paid from one side is received by the other side, and the overall cost
for the society is zero. In our model, the cost of the subvention should then be seen as an acceptance
cost. Obviously, it should lie between zero and the total amount of expenses spent by the government.
Indeed, the acceptance cost cannot be larger than the cost itself. In our model, we denote with a the
percentage of the subvention that is accounted as an acceptance cost for the society.
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Let x be the variables describing the activities in the classical energy model. Note that 11 (y),
n2(y), k(i) and j(s) belong to this vector. The energy model without taking the consumers’ purchasing
behaviour writes:

mxin c-x (7)

subject to
A-x>b. 8

In plain words, the model minimizes the overall costs subject to the energy supply chain
constraints and belongs to the class of mixed integer programs. Then, in the extended model, we
introduce the consumer purchasing behaviour in the following way. From the survey, we compute the
market share of LED bulbs given a policy, and we denote with (i, s) these data. For the modelling,
we make three logical assumptions. First, for the residual capacity replacement (i.e., the replacement
of bulbs installed prior to the time horizon), the market share of LED bulbs is (i, s). Second, for new
demand, the market share of LED bulbs is [ (i, s). Third, for the replacement of bulbs that were installed
during the time horizon, each bulb is replaced with an identical one (i.e., consumers are consistent
over time). This behaviour is introduced in the model as follows. We denote with t; (respectively ¢;)
the operational life of the fluorescent bulb (respectively LED bulb). During the first years, before the
first bulbs installed during the time horizon have to be replaced (i.e., for y — yy < t1, t2), we have:

na(y) = (m(y) +m2(y)) Y1) - k(i) - j(s)- ©)

Unfortunately, this standard way does not preserve linearity. We therefore use the alternate
modelling proposed in Equations (1) and (2) and impose that:

my) < nz(y)ll_(il(;;s) M1 —k()+ M1 —j(s)) Viel Vses, (10)
1—1(i,s) . . .
n1(y) Znz(y)w—M(l—k(l))—M(l—](S)) Viel Vse§, (11)

where M is a big number. For t; < y —yp < t», we have to take into account the replacement of
fluorescent bulbs installed during the time horizon:

m(y) —nmy—t) < nz(y)ll(il(j’)s) +M(1—k(i))+M(1—j(s)) Viel VseS§, (12)

nl(y)nl(ytl)an(y)ll_(;/(Si')S))M(lk(i))M(lj(s)) Viel VseS.  (13)

Finally, for y — yo > t1, to, we have to take into account the replacement of both fluorescent and
LED bulbs installed during the time horizon:

() =y~ 1) < (naly) = maly = 12) 1 S+ MO k) + MO f(s)) Ve T Wses, (1)

() = mly = 1) 2 (naly) =y = 12) 1 5~ MO k) - MO = j(s)) el Wses. (1)

Letz = ), n2(y) be the total amount of LED bulbs bought during the time horizon (to keep it
simple, we omit the conversion factors encountered in OSeMOSYS). Applying the same alternate
modelling preserving linearity, the subvention’s acceptance cost must satisfy:

Coup < a-z-s+M(1—j(s)) VseS, (16)
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Coub = 4-2-s—M(1—j(s)) VseS. (17)

These two equations ensure that the acceptance cost equals the total costs of the subvention campaign
(total LED bulbs bought multiplied by the subvention per bulb) multiplied by the acceptance factor a.

The model has been implemented using the open source OSeMOSYS code and is available as
Supplementary Material. The files model.mod and model.dat contain the model and the data. The file
model.run contains commands to run the optimization in the AMPL environment and save interesting
results in a format readable by MATLAB or Octave. Here, in the core of the paper, we intentionally
used compact notations to describe our model. Details of the the key points” implementation in
0OSeMOSYS can be found in Appendix A. Table 1 gives the correspondence between notations used
throughout this paper and notations used in OSeMOSYS.

2.4. Data

Except two changes, we use the same dataset as in [52]. In their study, to simplify modelling,
they made a change from the original UTOPIA model: they assumed that the bulbs’ residual capacity
was null. They did this small change in order to keep their model as simple as possible. Indeed,
without this modification, it would have been necessary to introduce new computed parameters in
order to be able to keep the linearity of their model. Our approach does not suffer from this problem,
and we can take the same residual capacity as in the original UTOPIA model, namely 5.6 PJ/year.
The second change concerns the information campaign cost. As explained in [52], the cost of the
campaign is evaluated from observations based on the study in [53] and amounts to 20 million dollars
for the whole horizon. Since this is an estimation, they also took a more pessimistic estimation of 40
million dollars as a second scenario. In the present paper, in light of discussions with specialists, we
decided not to change the low scenario (20 million dollars), but to take a cost of 300 million dollars for
the high scenario. This high range between both scenarios reflects the fact that these figures rely on
rough estimations. Finally, following [52], we take for the subvention’s acceptance factor a = 50% and,
as this factor is extremely hard to estimate, conduct a marginal analysis for this parameter.

3. Results and Discussion

Though the model can be solved using the open source environment GNU MathProg, we used
the solver Mosek in the AMPL environment. All files used for the experiment are provided as
Supplementary Materials. We solved the model on an Intel Core i5-4590 computer with a CPU (central
processing unit) of 3.3 GHz and 8 Go RAM (random-access memory). The model had 36,229 linear
variables, 12 binary variables and 34,416 constraints. For this small model, the CPU time for the
resolution was about 0.10 s. The principal aim of this numerical experiment was to show how our
method externalizing the share of choice can be implemented. This case study also demonstrated the
benefits of externalizing the share of choice model compared to the direct method proposed in [52].
As mentioned in the previous section, with our method, we were able to take into account residual
capacities without introducing extra parameters, as is the case with the direct method. Moreover,
our approach could easily take into account the more realistic case where the policy was not static and
where the effect of the campaigns followed a dynamic process with inertia and erosion. This cannot
be taken into account by the direct method of [52]. Indeed, due to coupling non-linearity issues,
the resulting model would be a non-convex non-linear model for which no standard solving method is
available. This provides a definitive argument in favour of our method. To explore the performance
of the direct method (i.e., the method where the share of choice is not externalized), we took a
simplified version of the case study where the residual capacities were null. This simplified model had
36,229 linear variables, 132 binary variables and 33,692 constraints. For this simplified model, the CPU
time for the resolution was about 0.18 s, which is clearly higher than before.

A second aim of this case study was to illustrate the kind of results the method could provide.
The rest of the section analyses the results obtained from the case study.
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For the low scenario, we observe that it was optimal to run an information campaign and not to
give a subvention. The total discounted cost over the whole horizon of 20 years was 27,545 million
dollars. A marginal analysis showed that the threshold point for the subvention’s acceptance factor
was 2.2%. Indeed, below this point, it was optimal to give a subvention of four dollars per LED bulb
and not to run an information campaign.

For the high scenario, it was optimal not to run an information campaign and not to give a
subvention. The total discounted cost for the whole horizon was 27,554 million dollars. For the
subvention’s acceptance factor, the threshold was 3.3%. For a subvention acceptance factor lower
than this point, it was optimal to give a subvention of four dollars per LED bulb and not to run an
information campaign.

These results were comparable with those of [52], and we concluded that, for this dataset, a
subvention campaign would probably not be accepted by the population. Finally, this case study
shows the benefits of coupling a behavioural approach with a techno-economic model. Indeed, our
model reflects perfectly the consumer purchasing behaviour estimated through the survey even if
consumers are not economically rational. Actually, without the inclusion of the behavioural approach,
the proportion of LED bulbs would have been 100%, as they are economically more efficient than
fluorescent bulbs. For both scenarios, Figure 2 shows the bulbs’ installed capacity, whereas Figure 3
shows the bulbs” penetration.

Low scenario High scenario

Installed capacity , PJ/year

Installed capacity , PJ/year
ORrNWSEGON®

Year Year

Fluorescent bulbs LED bulbs

Fluorescent bulbs LED bulbs

Figure 2. Installed capacity for both scenarios.

Low scenario High scenario

Penetration
Penetration

Year Year

Fluorescent bulbs LED bulbs

Fluorescent bulbs LED bulbs

Figure 3. Bulbs’ penetration for both scenarios.

4. Conclusions

In the present paper, we proposed a new method that permits one to represent the real consumer’s
behaviour in an energy model even if this behaviour is not economically rational. This method
combines conjoint analysis with a techno-economic energy model and improves the method proposed
in [52] by externalizing the share of choice model. This new approach offers two advantages compared
to the old one. First, it reduces the number of binary variables and, hence, the computational complexity.
Second, it allows us to keep the linearity property even for more complex models. We particularly
think about models where the consumer’s choice follows a dynamic process. For this class of model,
the old approach would lead to a non-convex non-linear model for which no standard solving method
is available.
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We illustrated the methodology with the same case study as [52]. The case study explored the
consumer preferences between fluorescent and LED bulbs under two different government policies,
namely an information campaign and a subvention campaign promoting the more efficient LED bulb.
It was implemented with the open source code OSeMOSYS and is available as Supplementary Material.
As such, all developments in this research were based on open source tools so that other energy
modellers can also integrate behavioural approaches in their models.

The method proposed in the present paper is versatile and can easily be adapted to other problems.
In our view, nothing limits nor constrains the use of our approach for other datasets, other types of
techno-economic energy models or other problems. In this paper, the analysis has focused on a single
behavioural factor, which is the consumers’ behaviour with regard to light bulbs. The method can be
implemented to take into account simultaneously other factors such as the consumers’ behaviour with
regard to heating and transportation. In this study, we focused on the design of government policies,
but the method can be used for designing new products or services. For instance, the method can be
used for the design of a car sharing service, i.e., to chose the best characteristic of the service taking
into account economic constraints and the impacts on the traffic and the environment.

To conclude, in the trend of hybrid modelling, the present paper contributes to better integrating
real consumers’ behaviour in the techno-economic model. In further research, we intend to develop
a model where the government policies can vary and where the effect of the campaigns follows a
dynamic process with inertia and erosion.

Supplementary Materials: Supplementary Materials are available online at http:/ /www.mdpi.com/1996-1073/
11/7/1787/s1.
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The following abbreviations are used in this manuscript:

LED Light-Emitting Diode

WTP Willingness To Pay

PJ Petajoule

GHG Greenhouse Gas

MARKAL Market Allocation

TIMES The Integrated MARKAL-EFOM System

MESSAGE  Model for Energy Supply Strategy Alternatives and their General Environmental Impact
0SeMOSYS  Open Source Energy Modelling System

DICE Dynamic Integrated Climate-Economy
RICE Regional Integrated Climate-Economy
EPPA Emissions Prediction and Policy Analysis
IAM Integrated Assessment Model

IGSM Integrated Global System Model

WEM World Energy Model

GCAM Global Change Assessment Model

CPU Central Processing Unit


http://www.mdpi.com/1996-1073/11/7/1787/s1
http://www.mdpi.com/1996-1073/11/7/1787/s1

Energies 2018, 11, 1787 10 of 14

LED Light-Emitting Diode

WTP Willingness To Pay

PJ Petajoule

GHG greenhouse gas

MARKAL Market Allocation

TIMES The Integrated MARKAL-EFOM System

MESSAGE  Model for Energy Supply Strategy Alternatives and their General Environmental Impact
0SeMOSYS  Open Source Energy Modelling System

DICE Dynamic Integrated Climate-Economy
RICE Regional Integrated Climate-Economy
EPPA Emissions Prediction and Policy Analysis
IAM Integrated Assessment Model

IGSM Integrated Global System Model
WEM World Energy Model

GCAM Global Change Assessment Model
CPU Central Processing Unit

RAM Random-Access Memory

GHz Gigahertz

Go Giga Octets

NEMS The National Energy Modeling System

Appendix A. Modifications in the OSeMOSYS Code

This section presents the major modification made in UTOPIA’s OSeMOSYS code in order to
implement our method. Table 1 gives the correspondence between notations used throughout this
paper and notations used in OSeMOSYS. The following modifications are made in the modelling file:

set CAMPAIGN;

set SUBVENTION;

param COST_CAMPAIGN{c in CAMPAIGN};

param ACCEPTANCE_SUBVENTION;

var campaign{c in CAMPAIGN} binary;

var subvention{s in SUBVENTION} binary;

var cost_subvention;

var LED_bought; # million LED bulbs bought
param BIGM;

param SHARE{c in CAMPAIGN, s in SUBVENTION};

minimize cost: (sum{r in REGION, y in YEAR} TotalDiscountedCost[r,y])
+ (sum{c in CAMPAIGN} COST_CAMPAIGN[c] * campaignl[c])
+ cost_subvention;

subject to E_LED_bought:
LED_bought =
(sum {r in REGION, t in TECHNOLOGY, y in YEAR: t = ’RL2’}NewCapacityl[r,t,y])*278/14 ;

subject to El_cost_subvention{s in SUBVENTION}:
cost_subvention <=
ACCEPTANCE_SUBVENTION *LED_bought*s + BIGM* (1l-subvention[s]);

subject to E2_cost_subvention{s in SUBVENTION}:
cost_subvention >=
ACCEPTANCE_SUBVENTION *LED_bought*s - BIGM* (1-subvention[s]);



Energies 2018, 11, 1787 11 of 14

subject to normalisationl:
sum {c in CAMPAIGN} campaign[c]=1;

subject to normalisation2:
sum {s in SUBVENTION} subvention[s]=1;

subject to share_al{r in REGION, y in YEAR, ¢ in CAMPAIGN,
s in SUBVENTION: y<first(YEAR)+ Operationallife[r,"RL1"]}:
NewCapacity[r,"RL1",y] <=
NewCapacity[r,"RL2",y]l*((1-SHARE[c,s])/SHARE[c,s])

+ BIGM *(1-subvention[s])+ BIGM *(1- campaign([c]) ;

subject to share_1bl{r in REGION, y in YEAR, c in CAMPAIGN,
s in SUBVENTION: y<first(YEAR)+ Operationallife[r,"RL1"]}:
NewCapacity[r,"RL1",y]l>=
NewCapacity[r,"RL2",y]*((1-SHARE[c,s])/SHARE[c,s])

- BIGM *(1-subvention[s])- BIGM *(1-campaignl[c]l) ;

subject to share_a2{r in REGION, y in YEAR, c in CAMPAIGN, s in SUBVENTION:
y>=first (YEAR)+ OperationalLife[r,"RL1"] and

y< first(YEAR)+ Operationallifel[r,"RL2"] }:

NewCapacity[r,"RL1",y] -

NewCapacity[r,"RL1",y-OperationalLife[r,"RL1"]] <=
NewCapacity[r,"RL2",yl*((1-SHARE[c,s])/SHARE[c,s])

+ BIGM *(1-subvention[s])+ BIGM *(1-campaign[c]) ;

subject to share_b2{r in REGION, y in YEAR, c¢ in CAMPAIGN, s in SUBVENTION:
y>=first (YEAR)+ Operationallife[r,"RL1"] and

y< first(YEAR)+ Operationallife[r,"RL2"] }:

NewCapacity[r,"RL1",y] -

NewCapacity[r,"RL1",y-OperationalLife[r,"RL1"]] >=
NewCapacity[r,"RL2",y]*((1-SHARE[c,s])/SHARE[c,s])

- BIGM *(1-subvention[s])- BIGM *(1-campaign[c]) ;

subject to share_a3{r in REGION, y in YEAR, c in CAMPAIGN, s in SUBVENTION:
y>= first(YEAR)+ Operationallife[r,"RL2"]}:

NewCapacity[r,"RL1",y] -

NewCapacity[r,"RL1",y-OperationalLife[r,"RL1"]] <=

(NewCapacity[r, "RL2",y]

-NewCapacity[r,"RL2",y-Operationallife[r,"RL2"]])

* ((1-SHARE[c,s])/SHARE[c,s])

+ BIGM *(1-subvention[s])+ BIGM *(1-campaign([c]) ;

subject to share_b3{r in REGION, y in YEAR, c¢ in CAMPAIGN, s in SUBVENTION:
y>= first(YEAR)+ OperationalLife[r,"RL2"]}:

NewCapacity[r,"RL1",y] -

NewCapacity[r,"RL1",y-OperationalLife[r,"RL1"]] >=

(NewCapacity[r,"RL2",y]

-NewCapacity[r,"RL2",y-OperationallLife[r,"RL2"]])
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*((1-SHARE[c,s])/SHARE[c,s])
- BIGM *(1-subvention[s])- BIGM *(1-campaign[c]) ;

The following modifications are made in the data file:

set CAMPAIGN:= 0 1;
set SUBVENTION:= 0 1 23456 7 8 9;

param COST_CAMPAIGN:= 0 0 1 20;
param ACCEPTANCE_SUBVENTION:= 0.5;
param BIGM:=9999;

param SHARE:=

0 0 0.600

0 1 0.600

18 0.983

19 0.992
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