A penalty-regularization-operator splitting method for the numerical solution of a scalar Eikonal equation

Caboussat, Alexandre ( Haute école de gestion de Genève, HES-SO // Haute Ecole Spécialisée de Suisse Occidentale) ; Glowinski, Roland ( University of Houston, Texas, USA)

In this article, we discuss a numerical method for the computation of the minimal and maximal solutions of a steady scalar Eikonal equation. This method relies on a penalty treatment of the nonlinearity, a biharmonic regularization of the resulting variational problem, and the time discretization by operator-splitting of an initial value problem associated with the Euler-Lagrange equations of the regularized variational problem. A low-order finite element discretization is advocated since it is well-suited to the low regularity of the solutions. Numerical experiments show that the method sketched above can capture efficiently the extremal solutions of various two-dimensional test problems and that it has also the ability of handling easily domains with curved boundaries.


Mots-clés:
Type d'article:
scientifique
Faculté:
Economie et Services
Ecole:
HEG - Genève
Institut:
CRAG - Centre de Recherche Appliquée en Gestion
Classification:
Economie/gestion
Date:
2015
Pagination:
30 p.
Publié dans
Chinese Annals of Mathematics, Series B
Numérotation (vol. no.):
2015, vol. 36, no. 5, pp. 659-688
DOI:
ISSN:
1860-6261
Le document apparaît dans:

Note: The status of this file is: restricted


 Notice créée le 2015-08-20, modifiée le 2018-12-07

Fichiers:
Télécharger le document
PDF

Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)