Semi–supervised learning for image modality classification

García Seco de Herrera, Alba (University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis)) ; Markonis, Dimitrios (University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis)) ; Joyseeree, Ranveer (University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), Swiss Federal Institute of Technology, Zurich, Switzerland) ; Schaer, Roger (University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis)) ; Foncubierta-Rodríguez, Antonio (Swiss Federal Institute of Technology, Zurich, Switzerland) ; Müller, Henning (University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis))

Searching for medical image content is a regular task for many physicians, especially in radiology. Retrieval of medical images from the scientific literature can benefit from automatic modality classification to focus the search and filter out non–relevant items. Training datasets are often unevenly distributed regarding the classes resulting sometimes in a less than optimal classification performance. This article proposes a semi–supervised learning approach applied using a k–Nearest Neighbour (k–NN) classifier to exploit unlabelled data and to expand the training set. The algorithmic implementation is described and the method is evaluated on the ImageCLEFmed modality classification benchmark. Results show that this approach achieves an improved performance over supervised k–NN and Random Forest classifiers. Moreover, medical case–based retrieval benefits from the modality filter.


Mots-clés:
Type de conférence:
full paper
Faculté:
Economie et Services
Ecole:
HEG VS HES-SO Valais-Wallis - Haute Ecole de Gestion & Tourisme
Institut:
Institut Informatique de gestion
Classification:
Informatique
Adresse bibliogr.:
Vienna, Austria, 29 march 2015
Date:
Vienna, Austria
29 march 2015
2015
Pagination:
15 p.
Publié dans
Proceedings of ECIR workshop Multimodal Retrieval in the Medical Domain 2015
Le document apparaît dans:

Note Le statut de cette notice est : non diffusé

Note: The status of this file is: restricted


 Notice créée le 2015-09-04, modifiée le 2018-08-31

Fichiers:
Télécharger le document
PDF

Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)