Résumé

In this paper we assess about the recognition of User Interaction events when handling electrical devices. This work is placed in the context of Intrusive Load Monitoring used for appliance recognition. ILM implies several Smart Metering Sensors to be placed inside the environment under analysis (in our case we have one Smart Metering Sensor per device). Our existing system is able to recognise the appliance class (as coffee machine, printer, etc.) and the sequence of states (typically Active / Non-Active) by using Hidden Markov Models as machine learning algorithm. In this paper we add a new layer to our system architecture called User Interaction Layer, aimed to infer the moments (called User Interaction events) during which the user interacts with the appliance. This layer uses as input the information coming from HMM (i.e. the recognised appliance class and the sequence of states). The User Interaction events are derived from the analysis of the transitions in the sequences of states and a ruled-based system adds or removes these events depending on the recognised class. Finally we compare the list of events with the ground truth and we obtain three different accuracy rates: (i) 96.3% when the correct model and the real sequence of states are known a priori, (ii) 82.5% when only the correct model is known and (iii) 80.5% with no a priori information.

Détails

Actions