Résumé

Diagnosing the glaucoma is a very difficult task for healthcare professionals. High intraocular pressure (IOP) remains the main treatable symptom of this degenerative disease which leads to blindness. Nowadays, new types of wearable sensors, such as the contact lens sensor Triggerfish ® , provide an automated recording of 24-hour profile of ocular dimensional changes related to IOP. Through several clinical studies, more and more IOP-related profiles have been recorded by those sensors and made available for elaborating data-driven experiments. The objective of such experiments is to analyse and detect IOP pattern differences between ill and healthy subjects. The potential is to provide medical doctors with analysis and detection tools allowing them to better diagnose and treat glaucoma. In this paper we present the methodologies, signal processing and machine learning algorithms elaborated in the task of automated detection of glaucomatous IOP-related profiles within a set of 100 24-hour recordings. As first convincing results, we obtained a classification ROC AUC of 81.5%.

Détails

Actions