Résumé

Background : The collection and annotation of medical images are hindered by data scarcity, privacy, and ethical reasons or limited resources, negatively affecting deep learning approaches. Data augmentation is often used to mitigate this problem, by generating synthetic images from training sets to improve the efficiency and generalization of deep learning models. Methods : We propose the novel use of statistical shape and intensity models (SSIM) to generate augmented images with variety in both shape and intensity of imaged structures and surroundings. The SSIM uses segmentations from training images to create co-registered tetrahedral meshes of the structures and to efficiently encode image intensity in their interior with Bernstein polynomials. In the context of segmentation of hip joint (pathological) bones from retrospective computed tomography images of 232 patients, we compared the impact of SSIM-based and basic augmentations on the performance of a U-Net model. Results : In a fivefold cross-validation, the SSIM augmentation improved segmentation robustness and accuracy. In particular, the combination of basic and SSIM augmentation outperformed trained models not using any augmentation, or relying exclusively on a simple form of augmentation, achieving Dice similarity coefficient and Hausdorff distance of 0.95 [0.93–0.96] and 6.16 [4.90–8.08] mm (median [25th–75th percentiles]), comparable to previous work on pathological hip segmentation. Conclusions : We proposed a novel augmentation varying both the shape and appearance of structures in generated images. Tested on bone segmentation, our approach is generalizable to other structures or tasks such as classification, as long as SSIM can be built from training data.

Détails

Actions

PDF