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We present a numerical model for the approximation of multiphase flows with free surfaces 
and strong interfacial effects. The model relies on the multiphase incompressible Navier-Stokes 
equations, and includes surface tension effects on the interfaces between phases, and contact 
angles. The volume-of-fluid approach is used to track the interfaces and the free surfaces between 
the various phases and the ambient air. The numerical method relies on an operator splitting 
strategy. The space discretization relies on a two-grid approach that uses an unstructured finite 
element mesh for diffusion phenomena and a structured Cartesian grid for advection phenomena. 
An adaptive mesh refinement algorithm is incorporated to better track the interfaces and free 
surfaces on the finite element mesh, and approximate more accurately surface forces. The model 
is validated through numerical experiments, in particular for emulsion problems.

1. Introduction

Multiphase flows are ubiquitous in nature, and industrial applications are numerous. The objective of this work is ultimately to 
address the numerical simulation of emulsion processes in food engineering [1–4]. These processes typically involve the creation 
of small droplets of one liquid dispersed into another. It includes strong interfacial effects, such as surface tension, contact angles, 
and boundary layers. For instance, the numerical simulation of multiphase flows includes contact angles in [5,6]. Mesh dependency, 
including non-consistent modeling of contact angles in capillary flows, has been emphasized in [7]. The interaction between droplets 
and interfacial effects has been treated in, e.g., [8,9], in particular in T-junction geometries.

The main characteristic of the method presented here is to allow the simulation of multiphase flows with strong interfacial effects 
on the interfaces between phases. A mathematical model for the numerical simulation of Newtonian fluids with free surfaces has been 
presented and validated in [10–12]. Surface tension effects have been added in [13], but only when considering one single liquid 
phase surrounded by void. The model has been extended to the simulation of multiphase flows in [14], for macroscopic effects, 
but without surface tension effects. Here the interfacial effects are added to the algorithm by means of a mesh cutting algorithm to 
increase the accuracy of the approximation method at the interfaces.

We consider a domain containing several liquid phases, potentially with free surfaces in contact with the ambient air considered 
as void. The incompressible Navier-Stokes equations are solved in the whole liquid domain. The surface tension and the contact 
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Fig. 1. 2D sketch of the geometrical domain for the simulation of multiphase flows with strong interfacial effects. The case of the geometry for emulsion processes, 
where droplets of a dispersed phase (index 𝓁 = 1) injected horizontally are created by a continuous phase (index 𝓁 = 2) injected laterally from top and bottom.

angles on each interface (liquid/liquid, liquid/air and solid/liquid) are taken into account. The system of equations is supplemented 
with appropriate boundary and initial conditions. The novelty of the proposed approach lies in the choice of a dedicated numerical 
method. In particular, a local adaptive mesh cutting technique [11,15] is applied at the interfaces to provide an accurate description 
of the surface effects and forces. An operator splitting approach is advocated to decouple the diffusion operators and the advection 
operators (transport of quantities) [16,17]. The volume fraction approach is used to track the position of the liquid phases [18]. The 
space discretization relies on a two-grid method that uses an unstructured finite element mesh for the diffusion phenomena, and a 
structured Cartesian grid for the advection phenomena [19].

The article is structured as follows. In Section 2, we describe the mathematical model. Section 3 details the time discretization via 
an operator splitting algorithm. Section 4 describes the space discretization, using a two-grid approach. A special emphasis is made 
on the novel adaptive local mesh cutting technique. The results of numerical experiments are presented in Section 5, to validate the 
numerical methods, and to finally address the microfluidic process of producing emulsions.

2. Mathematical model

Let us consider Λ ⊂ℝ𝑑 , 𝑑 = 2, 3, a bounded domain containing 𝐿 ≥ 2 immiscible and incompressible liquid phases, and let 𝑇 > 0
be the final time of the simulation. For any time 𝑡 ∈ (0, 𝑇 ), the subdomain of Λ occupied by the 𝓁-th phase is denoted by Ω𝓁(𝑡), 
𝓁 = 1, … , 𝐿, such that Ω(𝑡) ∶=

⋃𝐿
𝓁=1 Ω𝓁(𝑡) represents the whole liquid domain at time 𝑡.

For convenience, we denote by Ω0(𝑡) ∶= Λ∖Ω(𝑡) the domain considered as vacuum; it is assumed to have no influence on the 
liquid phases. The interfaces between different media are expressed as Γ𝑖,𝑗 (𝑡) ∶= 𝜕Ω𝑖(𝑡) ∩ 𝜕Ω𝑗 (𝑡), for 0 ≤ 𝑖, 𝑗 ≤𝐿, 𝑖 ≠ 𝑗. The interfaces 
Γ0,𝑗 (𝑡), 𝑗 = 1, … , 𝐿 between the phases and the vacuum are called free surfaces. A sketch of the geometrical domain for the emulsion 
process (in two space dimensions) is illustrated in Fig. 1.

The evolution of the liquid domains is modeled by means of a volume-of-fluid method (VOF). Let 𝜑𝓁 ∶ Λ × (0, 𝑇 ) → {0, 1} be the 
characteristic function of domain Ω𝓁(𝑡), such that

Ω𝓁(𝑡) =
{
𝐱 ∈Λ ∶ 𝜑𝓁(𝐱, 𝑡) = 1

}
, 𝓁 = 1,… ,𝐿.

It follows that 𝜑 ∶=
∑𝐿

𝓁=1𝜑𝓁 is the characteristic function of the liquid domain Ω(𝑡). We define by 𝜑0 = 1 − 𝜑 the characteristic 
function of Ω0(𝑡). Note that the emulsion process illustrated in Fig. 1 does not contain any void domain Ω0(𝑡) since the computational 
domain is full of liquid (Ω(𝑡) = Λ). Denoting respectively by 𝜌𝓁 and 𝜇𝓁 the mass density and the dynamic viscosity of the 𝓁-th phase 
(both assumed to be constant in each liquid phase), the density and the viscosity of the liquid may then be expressed as

𝜌 =
𝐿∑

𝓁=1
𝜑𝓁𝜌𝓁 , and 𝜇 =

𝐿∑
𝓁=1
𝜑𝓁𝜇𝓁 .

Let 𝑄𝑇 denote the restricted space-time domain containing the liquid:

𝑄𝑇 = {(𝐱, 𝑡) ∈ Λ × (0, 𝑇 ) ∶ 𝐱 ∈Ω(𝑡)} = {(𝐱, 𝑡) ∈ Λ × (0, 𝑇 ) ∶ 𝜑(𝐱, 𝑡) = 1} .

Assuming that 𝑄𝑇 is sufficiently regular, the velocity field 𝐯 ∶ 𝑄𝑇 → ℝ𝑑 , the pressure field 𝑝 ∶ 𝑄𝑇 → ℝ and the VOF functions 
𝜑𝓁 ∶ Λ × (0, 𝑇 ) → {0, 1} are assumed to satisfy the following system of equations:

𝜌
𝜕𝐯
𝜕𝑡

+ 𝜌(𝐯 ⋅∇)𝐯−∇ ⋅ (𝝈(𝐯, 𝑝)) = 𝐅 , (1)

∇ ⋅ 𝐯 = 0, (2)
𝜕𝜑
2

𝓁

𝜕𝑡
+ 𝐯 ⋅∇𝜑𝓁 = 0, 𝓁 = 1,… ,𝐿, (3)



Journal of Computational Physics 504 (2024) 112846A. Caboussat, J. Hess, A. Masserey et al.

where 𝝈(𝐯, 𝑝) = 2𝜇𝜺(𝐯) − 𝑝𝐈 is the total stress tensor, 𝜺(𝐯) = 1
2 (∇𝐯 +∇𝐯𝑇 ) is the strain rate tensor and 𝐅 is the vector of external forces 

(e.g., the gravity forces 𝐅 = 𝜌𝐠 in most cases).
Equations (1)(2) are the incompressible, time-dependent, Navier-Stokes equations. The transport equations (3) describe the kine-

matics of the liquid domains (and their interfaces) and must be interpreted in a weak sense, as 𝐯 in (Λ × (0, 𝑇 ))∖𝑄𝑇 is a regular 
extension of 𝐯 inside 𝑄𝑇 (see, e.g., [19,20]). The continuity of the velocity field is enforced on each interface, namely

[𝐯]𝑖𝑗 = 𝟎 on Γ𝑖,𝑗 (𝑡), 1 ≤ 𝑖, 𝑗 ≤𝐿, 𝑖 ≠ 𝑗, (4)

where [⋅]𝑖𝑗 is the jump operator on Γ𝑖,𝑗 (𝑡) defined as

[𝐰]𝑖𝑗 ∶= 𝐰|Ω𝑖(𝑡) − 𝐰|Ω𝑗 (𝑡) , (5)

for any field 𝐰 ∶ 𝑄𝑇 → ℝ𝑑 . Note that, when writing the weak formulation of the Navier-Stokes equations with variable densities 
and viscosities, the explicit formulation of boundary terms leads to enforcing the continuity of velocities and forces at the interfaces 
between phases. This continuous velocity is then used to transport the fluid particles in the volume-of-fluid model. Let us denote by 
𝐧Γ𝑖𝑗 the unit normal vector to Γ𝑖,𝑗 (𝑡) (towards Ω𝑗 (𝑡)), for 0 ≤ 𝑖, 𝑗 ≤ 𝐿, 𝑖 ≠ 𝑗. Surface tension effects are taken into account via a force 
term imposed on each interface, namely

[𝝈𝐧Γ𝑖𝑗 ]𝑖𝑗 = 𝛾𝑖𝑗 𝐻𝑖𝑗 𝐧Γ𝑖𝑗 on Γ𝑖,𝑗 (𝑡), 0 ≤ 𝑖, 𝑗 ≤𝐿, 𝑖 ≠ 𝑗, (6)

where 𝛾𝑖𝑗 is the surface tension coefficient between phases 𝑖 and 𝑗, and 𝐻𝑖𝑗 is the mean curvature of Γ𝑖,𝑗 (𝑡).
The equations in (6) must be completed with boundary conditions including contact angles between the interface Γ𝑖,𝑗 (𝑡) and the 

wall 𝜕Ω(𝑡). This effect is treated following the approach advocated in [21,22], namely by adding an integral over Γ𝑖,𝑗 (𝑡) in the weak 
formulation, using a surface version of the divergence theorem.

The model is completed with initial and boundary conditions. The volume fraction of each phase 𝜑𝓁(⋅, 0) is given at initial time 
𝑡 = 0 in Λ, which is equivalent to defining the initial liquid regions Ω𝓁(0), for 𝓁 = 1, … , 𝐿. The initial (divergence free) velocity field 
𝐯(0) = 𝐯0 is then prescribed in Ω(0).

The Navier-Stokes equations (1)(2) are completed with no-slip or pure-slip boundary conditions imposed on impermeable walls 
𝜕Ω(𝑡) ∩ 𝜕Λ. Inflow boundary conditions for both the velocity 𝐯 and the volume fractions 𝜑𝓁 are enforced on the inlet part of 𝜕Λ (if 
any, namely, for all (𝐱, 𝑡) ∈ 𝜕Λ × (0, 𝑇 ) such that 𝐯(𝐱, 𝑡) ⋅𝐧𝜕Λ < 0). Outflow boundary conditions are imposed at the exit of the domain 
(if any), i.e. enforcing a zero normal force and a zero tangential velocity.

3. Time discretization

The implicit splitting algorithm of order one described in [12,13,19] for Newtonian free surface flows, and in [14] for multiphase 
flows, is extended here to multiphase flows with interfacial effects. It relies on an operator splitting strategy that allows to decouple 
advection and diffusion phenomena.

Let 𝑁𝑇 be the total number of time steps, 0 = 𝑡0 < 𝑡1 < 𝑡2 <… < 𝑡𝑁𝑇 = 𝑇 be a subdivision of the time interval [0, 𝑇 ], and 
𝜏𝑛 ∶= 𝑡𝑛+1 − 𝑡𝑛 be the (𝑛 + 1)-th time step, 𝑛 = 0, 1, 2, … , 𝑁𝑇 − 1.

Assume that 𝜑𝑛𝓁 ∶ Λ →ℝ is an approximation of 𝜑𝓁 at time 𝑡𝑛, which defines the domain occupied by the 𝓁-th phase Ω𝑛𝓁 = {𝐱 ∈
Λ ∶ 𝜑𝑛𝓁(𝐱) = 1}, for 𝓁 = 1, … , 𝐿. The overall liquid domain at time 𝑡𝑛 is thus given by Ω𝑛 =

⋃𝐿
𝓁=1 Ω

𝑛
𝓁 , and Ω𝑛0 = Λ∖Ω𝑛. Let 𝐯𝑛, 𝑝𝑛 be 

known approximations of 𝐯, 𝑝 in Ω𝑛 at time 𝑡𝑛. The approximations 𝜑𝑛+1𝓁 , Ω𝑛+1𝓁 , Ω𝑛+1, 𝐯𝑛+1, 𝑝𝑛+1 at time 𝑡𝑛+1 are computed by means 
of a splitting algorithm as illustrated in Fig. 2.

3.1. Diffusion operator

First, a generalized Stokes problem is solved in order to obtain the predicted velocity 𝐯𝑛+1∕2 and the pressure 𝑝𝑛+1 in the overall 
liquid domain Ω𝑛. The continuous Stokes system reads:

𝜌
𝜕𝐯
𝜕𝑡

−∇ ⋅ 𝝈(𝐯, 𝑝) = 𝐅, (7)

∇ ⋅ 𝐯 = 0. (8)

An implicit Euler scheme is used for the time discretization of this Stokes system in Ω𝑛 :

𝜌𝑛
𝐯𝑛+1∕2 − 𝐯𝑛
𝜏𝑛

−∇ ⋅ 𝝈𝑛(𝐯𝑛+1∕2, 𝑝𝑛+1) = 𝐅𝑛, (9)

∇ ⋅ 𝐯𝑛+1∕2 = 0, (10)

with no-slip or pure-slip conditions on the boundary of the cavity 𝜕Ω𝑛 ∩ 𝜕Λ, and surface tension forces on each interface:

[𝝈𝑛(𝐯𝑛+1∕2, 𝑝𝑛+1)𝐧Γ𝑛
𝑖𝑗
]𝑖𝑗 = 𝛾𝑖𝑗𝐻𝑛𝑖𝑗𝐧Γ𝑛𝑖𝑗 on Γ𝑛

𝑖,𝑗
, 0 ≤ 𝑖, 𝑗 ≤𝐿, 𝑖 ≠ 𝑗, (11)
3

where 𝐻𝑛
𝑖𝑗

is the mean curvature of Γ𝑛
𝑖,𝑗

= 𝜕Ω𝑛
𝑖
∩ 𝜕Ω𝑛

𝑗
. Here the density and the viscosity are respectively defined by
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Fig. 2. Operator splitting algorithm (from top to bottom). At each time step 𝑛, we first solve a generalized Stokes problem, including interfacial effects, in order to 
obtain the predicted velocity 𝐯𝑛+1∕2 and the pressure 𝑝𝑛+1 . Then, advection problems are solved in order to obtain the new volume fractions 𝜑𝑛+1𝓁 (and thus the new 
liquid domain Ω𝑛+1), and the corrected velocity 𝐯𝑛+1.

𝜌𝑛 =
𝐿∑

𝓁=1
𝜑𝑛𝓁𝜌𝓁 , and 𝜇𝑛 =

𝐿∑
𝓁=1
𝜑𝑛𝓁𝜇𝓁 .

This implies in particular that 𝝈𝑛(𝐰, 𝑞) = 2𝜇𝑛𝜺(𝐰) − 𝑞𝐈. Finally, 𝐅𝑛 = 𝐅(𝑡𝑛).

3.2. Advection operator

Then, considering the advection operators in (1) and (3), the second step consists in using the prediction of the velocity 𝐯𝑛+1∕2 in 
order to transport the volume fractions 𝜑𝑛𝓁 and the velocity 𝐯𝑛+1∕2 itself. This step allows to obtain the new volume fractions 𝜑𝑛+1𝓁
(and thus the new liquid domains Ω𝑛+1𝓁 and Ω𝑛+1) and the corrected velocity 𝐯𝑛+1. More precisely, this advection step consists in 
solving, between 𝑡𝑛 and 𝑡𝑛+1 the following system of 𝐿 + 1 equations:

𝜕𝜑𝓁

𝜕𝑡
+ 𝐯 ⋅∇𝜑𝓁 = 0, 𝓁 = 1,… ,𝐿, (12)

𝜕𝐯
𝜕𝑡

+ (𝐯 ⋅∇)𝐯 = 0, (13)

with initial conditions 𝜑𝑛𝓁 and 𝐯𝑛+1∕2, respectively. This system of hyperbolic equations is solved with a forward characteristics 
method, so that 𝜑𝑛+1𝓁 and 𝐯𝑛+1 are respectively given by

𝜑𝑛+1𝓁 (𝐱 + 𝜏𝑛𝐯𝑛+1∕2(𝐱)) = 𝜑𝑛𝓁(𝐱), 𝓁 = 1,… ,𝐿, (14)

𝐯𝑛+1(𝐱 + 𝜏𝑛𝐯𝑛+1∕2(𝐱)) = 𝐯𝑛+1∕2(𝐱), (15)

for all 𝐱 ∈Ω𝑛. The new domain Ω𝑛+1 is then defined as Ω𝑛+1 =
⋃𝐿

𝓁=1 Ω
𝑛+1
𝓁 , where Ω𝑛+1𝓁 = {𝐱 ∈Λ ∶ 𝜑𝑛+1𝓁 (𝐱) = 1}, and Ω𝑛+10 = Λ∖Ω𝑛+1.

4. Space discretization

The space discretization relies on the two-grid approach presented in [12,13,19] and illustrated in Fig. 3, but incorporates a novel 
mesh cutting algorithm inspired by [11,15] and illustrated in Fig. 4. At each time step, it relies on:

(i) The restriction of a coarse, unstructured tetrahedral finite element discretization ℎ𝑓𝑒 of the whole cavity Λ (with typical mesh 
size ℎ𝑓𝑒), onto the overall liquid domain Ω𝑛 at each time step. The Stokes problem (9)(10) is solved on that mesh with low 
order continuous finite elements.

(ii) A regular grid ℎ𝑐𝑒𝑙𝑙𝑠 of (smaller) structured cells (with typical cell size ℎ𝑐𝑒𝑙𝑙𝑠 < ℎ𝑓𝑒) covering the cavity Λ, in order to solve the 
4

advection problems (12)(13) with a forward characteristics method.
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Fig. 3. Two-grid method (2D sketch). The diffusion problem is solved on an unstructured finite element mesh of typical size ℎ𝑓𝑒 (left). The advection problems are 
solved on a structured grid of smaller cubic cells of typical size ℎ𝑐𝑒𝑙𝑙𝑠 (right).

Fig. 4. Detailed cut-cell algorithm for the dispersed VOF phase: (a) Approximations 𝜑𝑛𝓁,ℎ𝑐𝑒𝑙𝑙𝑠 of the VOF phase; (b) Computation of the iso-surface {𝐱 ∈Λ ∶ 𝜑𝑛𝓁 (𝐱) = 1∕2
}

with the Marching Cubes 33 algorithm; (c) Computation of the signed distance on the finite element mesh; (d) Computation of the zero level-set of the signed distance; 
(e) Resulting phases on the finite element mesh, and (f) Visualization of the added edges on the finite element mesh.

The rationale behind using a two-grid method is, on the one hand, to use a finer structured grid to increase the accuracy of 
the approximation of 𝜑𝑛+1𝓁 (which are discontinuous at the interfaces), and thus of the approximations of the interfaces. Even with 
small grid cells, the forward characteristic method remains tractable in terms of computational cost. Despite being a low order 
method, the SLIC method is sufficient to obtain appropriate linear convergence for the global algorithm, while providing for a simple 
implementation. On the other hand, the computational cost of solving parabolic problems implicitly (such as the Stokes problem) is 
kept reasonable by using a coarser mesh and low order finite elements. Following [19,20], we typically advocate 3 ≤ ℎ𝑓𝑒∕ℎ𝑐𝑒𝑙𝑙𝑠 ≤ 5
for a reasonable trade-off between accuracy and computational efficiency. The initialization is achieved by enforcing piecewise 
constant values of the characteristic functions for each liquid phase, and of the velocity, on each grid cell.

In addition, in order to increase the accuracy of the approximation of interfacial effects, we introduce a mesh cutting algorithm 
that allows to generate vertices on the interfaces. This procedure increases the number of elements in the neighborhood of interfaces 
and free surfaces so that the mesh is adapted to the interfaces. It allows to obtain a smoother and more accurate approximation of 
5

these interfaces. The complete numerical method to locally refine the mesh near the interfaces is detailed in Section 4.2.
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4.1. General space-discretized operator-splitting algorithm

The complete space-discretized operator-splitting algorithm reads as follows. Let us denote by 𝜑𝑛𝓁,ℎ𝑐𝑒𝑙𝑙𝑠 , 𝐯
𝑛
ℎ𝑐𝑒𝑙𝑙𝑠

the piecewise 
constant approximations of 𝜑𝑛𝓁 , 𝐯𝑛 on ℎ𝑐𝑒𝑙𝑙𝑠 , and by 𝐯𝑛

ℎ𝑓𝑒
, 𝑝𝑛
ℎ𝑓𝑒

the finite element approximations of 𝐯𝑛, 𝑝𝑛 on  𝑛
ℎ𝑓𝑒

. At each time step 
𝑡𝑛, we assume that 𝜑𝑛𝓁,ℎ𝑐𝑒𝑙𝑙𝑠 and 𝐯𝑛

ℎ𝑐𝑒𝑙𝑙𝑠
are given, and we proceed as follows:

(1) (Adapt) Using 𝜑𝑛𝓁,ℎ𝑐𝑒𝑙𝑙𝑠 , we construct an adapted (and restricted) finite element discretization  𝑛
ℎ𝑓𝑒

of ℎ𝑓𝑒 in order to obtain 
a more accurate approximation of the interfaces. Then, we interpolate 𝐯𝑛

ℎ𝑐𝑒𝑙𝑙𝑠
from ℎ𝑐𝑒𝑙𝑙𝑠 onto  𝑛

ℎ𝑓𝑒
to obtain 𝐯𝑛

ℎ𝑓𝑒
(see Sec-

tion 4.2.5).
(2) (Diffusion) We solve the Stokes problem on  𝑛

ℎ𝑓𝑒
to obtain a prediction of the velocity 𝐯𝑛+1∕2

ℎ𝑓𝑒
and the pressure 𝑝𝑛+1

ℎ𝑓𝑒
, with the 

introduction of the interfacial terms. Then we interpolate 𝐯𝑛+1∕2
ℎ𝑓𝑒

from  𝑛
ℎ𝑓𝑒

onto ℎ𝑐𝑒𝑙𝑙𝑠 to obtain 𝐯𝑛+1∕2
ℎ𝑐𝑒𝑙𝑙𝑠

.

(3) (Advection) We solve the transport equations on ℎ𝑐𝑒𝑙𝑙𝑠 in order to obtain the corrected velocity 𝐯𝑛+1
ℎ𝑐𝑒𝑙𝑙𝑠

and 𝜑𝑛+1𝓁,ℎ𝑐𝑒𝑙𝑙𝑠
(see Sec-

tion 4.4).

The overall convergence rate of the numerical algorithm is order one. Thus, when dividing ℎ𝑓𝑒, ℎ𝑐𝑒𝑙𝑙𝑠 and 𝜏 by two, the error is divided 
by two. Note that when removing the interfacial terms, and thus not adapting the mesh in (Adapt), the algorithm corresponds to the 
one presented in [14].

Let us denote by 𝐾 a generic element (tetrahedron) of ℎ𝑓𝑒 with barycenter 𝐩𝐾 , and by 𝐶 a generic cell of ℎ𝑐𝑒𝑙𝑙𝑠 with barycenter 
𝐪𝐶 . At each time step 𝑛, the finite element approximation spaces for the approximations of the velocity and pressure respectively are 
defined as follows:

𝑉 𝑛
ℎ𝑓𝑒

=
{
𝑣ℎ𝑓𝑒

∈ 𝐶0(Ω𝑛) ∶ 𝑣ℎ𝑓𝑒
|||𝐾 ∈ ℙ𝐵1 , ∀𝐾 ∈  𝑛

ℎ𝑓𝑒

}
, (16)

𝑄𝑛
ℎ𝑓𝑒

=
{
𝑞ℎ𝑓𝑒

∈ 𝐶0(Ω𝑛) ∶ 𝑞ℎ𝑓𝑒
|||𝐾 ∈ ℙ1, ∀𝐾 ∈  𝑛

ℎ𝑓𝑒

}
, (17)

where ℙ𝐵1 is the space of first order polynomials on 𝐾 enriched with a bubble function (mini-elements) [23], and

𝑊ℎ𝑐𝑒𝑙𝑙𝑠
=
{
𝜃ℎ𝑐𝑒𝑙𝑙𝑠

∈𝐿2(Λ) ∶ 𝜃ℎ𝑐𝑒𝑙𝑙𝑠
|||𝐶 ∈ ℙ0, ∀𝐶 ∈ ℎ𝑐𝑒𝑙𝑙𝑠

}
. (18)

4.2. Adaptive finite element discretization and mesh cutting

In order to reduce numerical diffusion, we construct an adapted finite element mesh  𝑛
ℎ𝑓𝑒

that is refined around the interfaces and 
free surfaces of Ω𝑛. The approach presented in [11] is improved here by using a mesh cutting approach that relies on the piecewise 
constant approximations 𝜑𝑛𝓁,ℎ𝑐𝑒𝑙𝑙𝑠 on the finer grid ℎ𝑐𝑒𝑙𝑙𝑠 . In addition to the accuracy improvement, it allows the extension to multiple 
phases, and to increase accuracy around the interfaces between liquid phases as well. The underlying idea is to take advantage of 
the two-grid method, and of the finer structured mesh, to generate a more accurate approximation of the interfaces.

Fig. 4 details the steps of the cut-cell algorithm. Starting with the piecewise constant approximations 𝜑𝑛𝓁,ℎ𝑐𝑒𝑙𝑙𝑠 of the VOF phases 
(a), we compute approximations of 𝜑𝑛𝓁 at the vertices of each cell by averaging. Based on these values at the vertices, an approxima-

tion of the iso-surface 
{
𝐱 ∈ Λ ∶ 𝜑𝑛𝓁(𝐱) = 1∕2

}
is constructed with the algorithm Marching Cubes 33 [15] (b). This iso-surface consists 

of an independent surface mesh. A signed distance with respect to this iso-surface is computed on the vertices of the finite element 
mesh (c), and its zero level-set is determined (d). Based on this zero level-set, a cut-cell method allows to refine the finite element 
mesh by adding new edges [11] (e)-(f).

Note that the algorithm does not need to compute intersections between the iso-surface constructed with the Marching Cubes 33 
algorithm and the finite element mesh.

4.2.1. Extraction of iso-surfaces on the structured grid

For each phase 𝓁 = 1, … , 𝐿, the 1∕2-iso-surface

Σ𝑛𝓁 ∶=
{
𝐱 ∈ Λ ∶ 𝜑𝑛𝓁(𝐱) =

1
2

}
is approximated by using the Marching Cubes 33 algorithm [15]. Originally designed for computer graphics, the purpose of the 
Marching Cubes 33 algorithm is to extract a polygonal mesh of an iso-surface from a three-dimensional discrete scalar field. In three 
dimensions of space, the algorithm proceeds through the list of cubic cells of the structured grid to determine the ones intersecting the 
iso-surface defined by 

{
𝐱 ∈Λ ∶ 𝜑𝓁(𝐱, 𝑡) =

1
2

}
, at some time 𝑡. For each cell containing a section of the iso-surface, a triangular mesh 

approximating the trilinear interpolant within the cell is constructed. In the end, a triangular mesh is obtained that approximates 
the iso-surface. We use the fast and memory efficient implementation of the Marching Cubes 33 algorithm described in [15]. The 
resulting iso-surface approximations Σ𝑛𝓁,ℎ𝑐𝑒𝑙𝑙𝑠 are 2D surface finite element triangulations. The Marching Cubes 33 algorithm requires, 
6

as an input, values of 𝜑𝑛𝓁,ℎ𝑐𝑒𝑙𝑙𝑠 in the corners of each cell of ℎ𝑐𝑒𝑙𝑙𝑠 . These values are denoted by 𝜑̃𝑛𝓁,ℎ𝑐𝑒𝑙𝑙𝑠 , and obtained for each vertex 
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Fig. 5. Visualisation of the interface mesh (zero level-set) after cutting the finite element mesh, in the case of a hydrophilic droplet lying on a horizontal plane.

𝐪 ∈ ℎ𝑐𝑒𝑙𝑙𝑠 as 𝜑̃𝑛𝓁,ℎ𝑐𝑒𝑙𝑙𝑠 (𝐪) ∶= |𝐪|−1 ∑
𝐶∈𝐪

𝜑𝑛𝓁,ℎ𝑐𝑒𝑙𝑙𝑠
(𝐶), where 𝐪 ∶= {𝐶 ∈ ℎ𝑐𝑒𝑙𝑙𝑠 ∶ 𝐪 ∈ 𝐶} is the set of neighbor cells that share vertex 

𝐪 and |𝐪| is its cardinality.

4.2.2. Computation of signed distances on the finite element mesh

Consider ℎ𝑓𝑒 the initial unstructured tetrahedral finite element discretization of the whole cavity Λ. For each phase 𝓁 = 0, … , 𝐿
(including the void), we define the piecewise linear signed distance 𝑑𝑛𝓁 ∶ ℎ𝑓𝑒 ⟶ ℝ with respect to the iso-surface approximation 
Σ𝑛𝓁,ℎ𝑐𝑒𝑙𝑙𝑠 as follows:

𝑑𝑛𝓁(𝐩) ∶= sgn(𝜑̄𝑛𝓁,ℎ𝑐𝑒𝑙𝑙𝑠 (𝐩) −
1
2 ) min
𝑇∈Σ𝑛

𝓁,ℎ𝑐𝑒𝑙𝑙𝑠

𝑑(𝐩, 𝑇 ),

for each vertex 𝐩 ∈ ℎ𝑓𝑒 , where sgn(⋅) is the usual sign function, 𝑑(⋅, ⋅) is the standard point-to-triangle Euclidean distance [24], and 
𝜑̄𝑛𝓁,ℎ𝑐𝑒𝑙𝑙𝑠

is a trilinear interpolation of 𝜑̃𝑛𝓁,ℎ𝑐𝑒𝑙𝑙𝑠 at 𝐩 (as it is not necessarily a vertex of ℎ𝑐𝑒𝑙𝑙𝑠 ).
Note that 𝑑𝑛𝓁 > 0 in phase 𝓁 and 𝑑𝑛𝓁 < 0 elsewhere. Furthermore, the signed distance 𝑑𝑛0 relying on 𝜑𝑛0 is the opposite of the signed 

distance based on 𝜑𝑛 =
∑𝐿

𝓁=1𝜑
𝑛
𝓁 .

4.2.3. Iterative mesh cutting algorithm

The locally adapted finite element discretization  𝑛
ℎ𝑓𝑒

is obtained from ℎ𝑓𝑒 by using an iterative version of the level-set approach 
presented in [11]. The mesh cutting procedure relies on the above-presented distance function built thanks to the information on 
ℎ𝑐𝑒𝑙𝑙𝑠 , instead of the values of the volume fraction on ℎ𝑓𝑒 , as in [11] for one phase only.

Let 𝔗−1 ∶= ℎ𝑓𝑒 be the initial tetrahedral discretization of Λ, and 𝑑𝑛,−1𝓁 ∶= 𝑑𝑛𝓁 be the initial signed distances defined on 𝔗−1, for 
𝓁 = 0, … , 𝐿. Then:

For 𝑘 = 0, … , 𝐿,

(i) Refine 𝔗𝑘−1 by adding extra vertices on the zero level-set of 𝑑𝑛,𝑘−1
𝑘

and cut the neighboring elements to keep a conforming 
mesh, as in [11]. The resulting tetrahedral mesh is denoted 𝔗𝑘.

(ii) For 𝓁 = 0, … , 𝐿, update the signed distances 𝑑𝑛,𝑘𝓁 as the linear interpolation of 𝑑𝑛,𝑘−1𝓁 onto the new mesh 𝔗𝑘. Note that since 
the signed distances are piecewise linear functions, the zero level-sets of 𝑑𝑛,𝑘𝓁 and 𝑑𝑛,𝑘−1𝓁 are identical.

Note that, when cutting an element as in [11], a vertex is added on an edge only if the distance between that vertex and the edge 
extremities is larger than 1% of the edge length. More precisely, this distance should be larger than 𝜏 = max(𝜏min, 𝜀ℎmin), where 
𝜏min = 10−6 is the global minimal edge length, 𝜀 = 10−2, and ℎmin is the smallest edge length in the original mesh. Furthermore, 
whenever a choice must be made, elements are cut in order to maximize the minimum angle in the conforming sub-elements. The 
final discretization 𝔗𝐿 is an adapted finite element discretization of Λ that accurately approximates the interfaces between sub-
domains occupied by each phase. Fig. 5 visualizes the resulting interface (zero level-set) after cutting the finite element mesh, in the 
case of a hydrophilic droplet lying on a horizontal plane.

4.2.4. Phase index identification

Each of the elements of this final discretization 𝔗𝐿 contains one and only one phase by construction. We associate one phase to 
each of the elements 𝐾 ∈𝔗𝐿 by defining the phase index 𝑖𝐾 as:{

𝓁 if 𝑑𝐿𝓁 (𝐩𝐾 ) > 0 for some 0 ≤ 𝓁 ≤𝐿,
7

𝑖𝐾 ∶=
−1 otherwise.

(19)
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Note that the phase index is well-defined. The elements with 𝑖𝐾 = 0 correspond to the elements in the ambient air (vacuum). The 
elements with 𝑖𝐾 = −1 correspond to the elements that have been categorized as undetermined due to numerical approximations.

The region  ∶= {𝐾 ∈ 𝔗𝐿 ∶ 𝑖𝐾 < 0} is the region composed by undetermined elements. If  ≠ ∅, the undetermined elements 
get a phase index as follows. Let us assume that  is composed of 𝑀 > 0 connected components 𝑘, 𝑘 = 1, … , 𝑀 (in practice 
detected with a depth-first-search algorithm, see, e.g., [25]). Each connected component is attributed the phase index of its main 
phase, computed on the structured grid as

𝑖𝐾 ∶= argmax
0≤𝓁≤𝐿

∑
𝐶∈ℎ𝑐𝑒𝑙𝑙𝑠

|𝑘 ∩𝐶| 𝜑𝑛𝓁,ℎ𝑐𝑒𝑙𝑙𝑠 (𝐶)
|𝑘| , ∀𝐾 ∈𝑘. (20)

The characteristic functions of the sub-domains Ω𝑛𝓁 are therefore approximated by piecewise constant functions 𝜑𝑛𝓁,ℎ𝑓𝑒 ∶𝔗
𝐿⟶ {0, 1}

defined as

𝜑𝑛𝓁,ℎ𝑓𝑒
(𝐾) =

{
1 if 𝑖𝐾 = 𝓁

0 otherwise
, ∀𝐾 ∈𝔗𝐿. (21)

Finally, the restricted and locally adapted finite element discretization of Ω𝑛 is defined as  𝑛
ℎ𝑓𝑒

∶= {𝐾 ∈ 𝔗𝐿 ∶ 𝑖𝐾 > 0}, namely the 
union of all elements 𝐾 in 𝔗𝐿 that contain a liquid phase.

Note that, there might be some finite elements that do not contain a defined phase after the cut-cell algorithm. These undefined 
regions are mainly associated with triple-points, as the triple-points cannot be represented with simple signed distances. The proposed 
heuristics allows to fill the empty region with a given phase for robustness.

4.2.5. Interpolation/projection on the finite element mesh

The piecewise constant approximation 𝐯𝑛
ℎ𝑐𝑒𝑙𝑙𝑠

∈ (𝑊ℎ𝑐𝑒𝑙𝑙𝑠 )
𝑑 is interpolated onto the finite element space (𝑉 𝑛

ℎ𝑓𝑒
)𝑑 in order to solve 

the Stokes problem. The value of the interpolant at vertex 𝐩 ∈  𝑛
ℎ𝑓𝑒

is

𝐯𝑛
ℎ𝑓𝑒

(𝐩) =

∑
𝐾∈𝐩

∑
𝐶∈𝐾

𝐯𝑛
ℎ𝑐𝑒𝑙𝑙𝑠

(𝐶) ||𝐪𝐶 − 𝐩||−2
∑
𝐾∈𝐩

∑
𝐶∈𝐾

||𝐪𝐶 − 𝐩||−2 , (22)

where 𝐩 ∶= {𝐾 ∈  𝑛
ℎ𝑓𝑒

∶ 𝐩 ∈𝐾} is the set of elements that share vertex 𝐩 and 𝐾 ∶= {𝐶 ∈ ℎ𝑐𝑒𝑙𝑙𝑠 ∶ 𝜑𝑛ℎ𝑐𝑒𝑙𝑙𝑠 (𝐶) > 0, 𝐾 ∩𝐶 ≠ ∅} is the 
set of liquid/active cells that intersect element 𝐾 [26].

4.3. Stokes operator

Let us address the space discretization of (9)(10). The Stokes problem is solved with ℙ𝐵1 -ℙ1 finite elements. It consists in finding 
the velocity 𝐯𝑛+1∕2

ℎ𝑓𝑒
∈ (𝑉 𝑛

ℎ𝑓𝑒
)𝑑 and the pressure 𝑝𝑛+1

ℎ𝑓𝑒
∈𝑄𝑛

ℎ𝑓𝑒
, satisfying the essential boundary conditions on 𝜕Ω𝑛

ℎ𝑓𝑒
, and such that:

∫
Ω𝑛
ℎ𝑓𝑒

⎛⎜⎜⎝𝜌𝑛
𝐯𝑛+1∕2
ℎ𝑓𝑒

− 𝐯𝑛
ℎ𝑓𝑒

𝜏𝑛
⋅𝐰+ 2𝜇𝑛𝜺(𝐯𝑛+1∕2

ℎ𝑓𝑒
) ∶ 𝜺(𝐰)

⎞⎟⎟⎠𝑑𝐱
− ∫
Ω𝑛
ℎ𝑓𝑒

𝑝𝑛+1
ℎ𝑓𝑒

∇ ⋅𝐰𝑑𝐱 − ∫
Ω𝑛
ℎ𝑓𝑒

𝑞∇ ⋅ 𝐯𝑛+1∕2
ℎ𝑓𝑒

𝑑𝐱 = ∫
Ω𝑛
ℎ𝑓𝑒

𝐅𝑛 ⋅𝐰𝑑𝐱,

+
∑

0≤𝑖,𝑗≤𝑁,𝑖≠𝑗 ∫
Γ𝑛
𝑖𝑗,ℎ𝑓𝑒

𝛾𝑖𝑗 𝐻
𝑛
𝑖𝑗,ℎ𝑓𝑒

𝐧Γ𝑛
𝑖𝑗,ℎ𝑓𝑒

⋅∇𝐰𝑑𝑆 (23)

for all 𝐰 ∈ (𝑉 𝑛
ℎ𝑓𝑒

)𝑑 and 𝑞 ∈𝑄𝑛
ℎ𝑓𝑒

, compatible with the essential boundary conditions on 𝜕Ω𝑛
ℎ𝑓𝑒

.

We opt for the approach in [22] to automatically incorporate the surface terms, i.e., not only the surface tension effects, but also 
the contact angles terms. More precisely, we use a surface divergence formula in order to modify the last term of (23):

∫
Γ𝑛
𝑖𝑗,ℎ𝑓𝑒

𝐻𝑛
𝑖𝑗,ℎ𝑓𝑒

𝐧Γ𝑛
𝑖𝑗,ℎ𝑓𝑒

⋅∇𝐰𝑑𝑆 = − ∫
Γ𝑛
𝑖𝑗,ℎ𝑓𝑒

tr
(
∇Γ𝑛

𝑖𝑗,ℎ𝑓𝑒

∇𝐰
)
𝑑𝑆 + ∫

𝜕Γ𝑛
𝑖𝑗,ℎ𝑓𝑒

∇𝐰 ⋅𝐦𝑑𝓁.
8

The corresponding linear system is solved with a sequential, preconditioned GMRES method.
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Fig. 6. Visualization of the SLIC algorithm to concentrate the VOF phases prior to the advection with the forward characteristics method.

4.3.1. Interpolation/projection on the structured grid

The continuous approximation of the velocity 𝐯𝑛+1∕2
ℎ𝑓𝑒

∈ (𝑉 𝑛
ℎ𝑓𝑒

)𝑑 is then interpolated at the center of each grid cell in order to 

obtain a piecewise constant approximation 𝐯𝑛+1∕2
ℎ𝑐𝑒𝑙𝑙𝑠

∈ (𝑊ℎ𝑐𝑒𝑙𝑙𝑠 )
𝑑 . The value of the interpolant at cell 𝐶 ∈ ℎ𝑐𝑒𝑙𝑙𝑠 is

𝐯𝑛+1∕2
ℎ𝑐𝑒𝑙𝑙𝑠

(𝐶) =

∑
𝐾∈𝐶

∑
𝐩∈𝐾

𝐯𝑛+1∕2
ℎ𝑓𝑒

(𝐩) ||𝐪𝐶 − 𝐩||−2
∑
𝐾∈𝐶

∑
𝐩∈𝐾

||𝐪𝐶 − 𝐩||−2 , (24)

where 𝐶 ∶= {𝐾 ∈  𝑛
ℎ𝑓𝑒

∶𝐾 ∩𝐶 ≠ ∅} is the set of elements that intersect the cell 𝐶 [26].

4.4. Advection operators

Equations (14)(15) are solved using a forward characteristics method with projection on the structured grid ℎ𝑐𝑒𝑙𝑙𝑠 , together with 
a SLIC interface reconstruction algorithm for the approximation of 𝜑𝑛+1𝓁,ℎ𝑐𝑒𝑙𝑙𝑠

[18], and post-processing heuristics to avoid artificial 
compression.

More precisely, at time 𝑡𝑛, the algorithm consists in moving each cell 𝐶 ∈ ℎ𝑐𝑒𝑙𝑙𝑠 along the linearized characteristics 𝜏𝑛𝐯𝑛+1∕2
ℎ𝑐𝑒𝑙𝑙𝑠

(𝐶), 

and conservatively redistributing the transported quantities 𝜑𝑛𝓁,ℎ𝑐𝑒𝑙𝑙𝑠 and 𝐯𝑛+1∕2
ℎ𝑐𝑒𝑙𝑙𝑠

into the overlapped cells (proportionally to the 
volume of intersection between the transported cell and the overlapped cells) [19,20]. Although the forward characteristics method 
does not have to satisfy a CFL condition theoretically, the time step 𝜏𝑛 is chosen in order to enforce the CFL number to be typically 
between 1 and 5.

In order to enhance the quality of the approximations 𝜑𝑛+1𝓁,ℎ𝑐𝑒𝑙𝑙𝑠
, and thus reduce the numerical diffusion of the interfaces, we use 

a variation of the SLIC algorithm inspired by [18]. The SLIC algorithm is not used for interface reconstruction. It is used prior to 
the advection of each cell: instead of being diffuse in each cell, the volume fractions are geometrically condensed towards a sub-
region of the cell (according to the neighboring values). Fig. 6 illustrates the SLIC algorithm for the emulsion process, and shows 
the condensed phase location for the cells near the interfaces. The objective is to reduce the numerical diffusion of the forward 
characteristic method, but not to reconstruct the interface.

Replacing the SLIC algorithm with a PLIC approach would thus lead to slightly different values of the volume fractions on the 
grid, but with little impact on the surface mesh constructed with the Marching Cubes 33 algorithm, and on the cut finite element 
mesh.

Furthermore, when dealing with multiple phases, the SLIC reconstruction, the transport of volume fractions, the creation of new 
edges in the cut-cell method, and the filling of voids are done independently for each phase. Therefore, the ordering of phases does 
not have any impact. Details can be found in [19,20].

In order to avoid the artificial compression of the fluid phases (i.e. where 𝜑𝑛+1
ℎ𝑐𝑒𝑙𝑙𝑠

> 1), a post-processing technique related to 
global repair algorithms [27] is implemented. This decompression technique redistributes the excess of liquid from over-filled cells to 
the cells that are partially empty, and produces final values 𝜑𝑛+1

ℎ𝑐𝑒𝑙𝑙𝑠
which are between zero and one. The decompression algorithm is 

described in [14] and summarized, together with a custom correction step, in Appendix A.
The decompression algorithm favors conservation over causality. Fig. 7 illustrates the cells that are impacted by the final cor-

rection step. It emphasizes that i) these cells are strictly located at the interfaces and ii) the magnitude of the correction is of order 
0.1%.

5. Numerical experiments

Numerical experiments are presented to validate the numerical methods with successive benchmark cases, and finally focus 
on microfluidics and the emulsion processes. We highlight two aspects of the proposed numerical framework: the geometrical 
9

reconstruction of the interfaces, and the enforcement of surface forces on the interfaces. All numerical experiments have been 
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Fig. 7. Visualization of the cells impacted by the correction step applied after the redistribution algorithm (Step 4. of Appendix A). Location of the cells in which a 
small amount of the continuous phase has been extracted and replaced by the dispersed phase in order to empty the buffer of the dispersed phase. The correction is 
of the order of 0.1% in each individual cell.

performed on the same workstation, based on 64 Core AMD EPYC 7742 2.25GHz Processor, (Turbo up to 3.4GHz), and 256GB DDR4 
3200MHz ECC Memory.

5.1. Interface reconstruction via multiphase mesh cutting algorithm

In a first step, the interface reconstruction and the mesh cutting algorithm are validated with pure geometric configurations, 
involving three or more phases with interfaces and free surfaces, see, e.g., [28–31]. The accuracy of the interfaces approximation is 
quantified by the relative volume error defined as:

𝜀 ∶=
𝐿∑

𝓁=1

|𝑉𝓁 − 𝑉𝓁,𝑒𝑥|
𝑉𝓁,𝑒𝑥

, (25)

where 𝑉𝓁 = |Ω𝓁| is the approximated volume of the domain containing phase 𝓁 and 𝑉𝓁,𝑒𝑥 is the exact geometrical volume. We con-
sider configurations in two space dimensions within a unit square discretized with 𝑁 mesh elements per side. The first configuration 
is visualized in Fig. 8 and consists of two phases in concentric circles surrounded by a third phase. It shows that the mesh cutting 
algorithm accurately tracks the interfaces. Fig. 9 shows the convergence of the approximation of the volumes, which is slightly better 
than first-order convergence.

The second configuration is visualized in Fig. 10, and includes a triple-point [28,29]. With triple-points, the reconstruction of 
the interfaces is problematic and a void  is created (top row). This issue vanishes when adding the correction step described in 
Section 4.2 (bottom row). Thus this correction step to fill potential voids is applied for all numerical results presented hereafter. 
Fig. 11 shows again a convergence for the relative volume error that is slightly better than first-order convergence.

Finally, the third configuration is visualized in Fig. 12, and includes four phases. Flat horizontal interfaces are accurately recon-
structed also with unstructured meshes, as well as curved boundaries and triple-points. Note that the mesh cutting procedure appears 
to be smoother with unstructured meshes. Fig. 13 shows again a kind of super-convergence for the relative volume error.

Even though some of the examples presented in this Section include triple- or quadruple-points, they will not be discussed further 
in the sequel, as the main application of this work (emulsion processes) does not include such configurations.

5.2. Advection of four-material disk in a swirling motion

We consider the two-dimensional transport of multiple phases within a given velocity field (stretching flow, see, e.g., [32,33]). 
Within our framework, such a pure advection problem is solved only on the structured grid, therefore the cut-cell algorithm on 
the underlying finite-element mesh acts as a post-processing only. In the sequel of [14], we verify here the behavior of the cut-cell 
method.

The initial liquid domain consists of a disk of radius 0.15 centered at the point (0.5, 0.75). It is split into four liquid phases, each 
of them filling a quarter of the disk, as illustrated in Fig. 14. The advection velocity is given by:

𝐮(𝑥, 𝑦, 𝑡) =
{

2 sin(𝜋𝑦) cos(𝜋𝑦) sin(𝜋𝑥) sin(𝜋𝑥) cos(𝜋𝑡∕𝑇 ),
2 sin(𝜋𝑥) cos(𝜋𝑥) sin(𝜋𝑦) sin(𝜋𝑦) cos(𝜋𝑡∕𝑇 ).

(26)

This prescribed velocity being periodic in time, the initial liquid domain is recovered at time 𝑇 = 2. The computational domain is 
Λ = [0, 1]2, with a discretization of ℎ𝑓𝑒 = 1∕100, ℎ𝑐𝑒𝑙𝑙𝑠 = 1∕400 and 𝜏 = 1∕400.

Fig. 14 illustrates the position of the liquid phases at initial time (𝑡 = 0), at the time of maximal deformation (𝑡 = 1), and at final 
time (𝑡 = 2). One can see that the cut-cell method creates an undefined region near the quadruple point that is filled with one phase 
only. No special emphasis is made on the reconstruction of this central quadruple point. In the test cases presented hereafter, this 
10

situation will not appear as we consider only two-fluid cases, with a final focus on emulsion processes.
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Fig. 8. Interface reconstruction with mesh cutting. Configuration 1. Top row: coarse mesh (𝑁 = 16); bottom row: fine mesh (𝑁 = 32). Left: structured mesh; right: 
unstructured mesh (with zoom on the right part of the interface).

Fig. 9. Interface reconstruction with mesh cutting. Configuration 1. Convergence of relative volume error.

5.3. Lock-exchange experiment

As in, e.g., [14,34], we perform here numerical simulations of a lock-exchange flow with a high density ratio. We consider the 
setup described in [35]. A rectangular tank Λ = (−1.5, 3.0) × (0, 0.3) × (0, ℎ𝑓𝑒) is completely filled (i.e. Ω(𝑡) = Λ) with two immiscible 
fluids of densities 𝜌1 and 𝜌2 (𝜌1 < 𝜌2) respectively, with ratio 𝑟 ∶= 𝜌2∕𝜌1. This setup is a pseudo-2D geometry, i.e. in a thin-layered 
domain. Both fluids are initially at rest and separated by a vertical gate located at 𝑥 = 0.

Here we consider a ratio 𝑟 = 9.93, with 𝜌1 = 0.169454 [kg m−3], 𝜌2 = 1.68268 [kg m−3], 𝜇1 = 1.864 10−5 [Pa s] and 𝜇2 =
2.1 10−5 [Pa s]. A sharp front remains visible during the experiment reported in [35] as well as in some numerical simulations [34]. 
No surface tension is enforced in this particular case.

We consider four different discretizations of the computational domain Λ with 𝑁 = 10, 20, 40 and 80 mesh elements in the 
vertical part of the tank, such that ℎ𝑓𝑒 = 0.3∕𝑁 . We choose ℎ𝑐𝑒𝑙𝑙𝑠 = ℎ𝑓𝑒∕4 and 𝜏𝑛 = 0.2∕𝑁 . As in [35] we perform two distinct 
experiments: we start the simulation with the denser (resp. lighter) fluid in the left part of the cavity, with the interface located at 
one-third of the length of the cavity. Then we observe the progression of the front along the bottom (resp. top) part of the cavity 
when the front is moving to the right.

Fig. 15 shows snapshots of the evolution of the two liquids on the structured grid (when 𝑁 = 80). As expected in the absence 
11

of turbulence modeling, numerical instabilities are observed at some point. Convergence results are illustrated in Figs. 16 and 17. 
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Fig. 10. Interface reconstruction with mesh cutting. Configuration 2. Coarse mesh (𝑁 = 16). Top row: without the filling heuristic of the undetermined elements in 
; bottom row: with the filling heuristic of the undetermined elements in . Left: structured mesh; right: unstructured mesh (with zoom on the triple-point).

Fig. 11. Interface reconstruction with mesh cutting. Configuration 2. Convergence of relative volume error.

Fig. 16 illustrates the time evolution of the front, and compares with experimental data [35], for the dense (left column) and 
light (right column) fronts evolution (with slip boundary conditions). We observe that, when the discretization becomes finer, the 
fronts move faster. The evolution of the light front is more homogeneous, while the dense front shows more variability for various 
values of 𝑁 . Moreover, the slope of the light front evolution is more accurate. We note that the influence of the mesh cutting 
algorithm is very limited. Fig. 17 shows the convergence orders, and shows that the fronts are approximated with order one. The 
mesh cutting algorithm does not influence the accuracy of the dense front evolution. However, the accuracy of the light front gets 
better with adaptive mesh refinement. Fig. 15 visualizes the numerical approximations of 𝜑1 and 𝜑2 on the structured grid of small 
cells. It presents little inclusions of the light material inside the heavier one, which do not appear on the finite element mesh after 
interpolation from the fine grid to the coarser mesh.

5.4. Surface tension and contact angles for static droplets

We address here the case of hydrophilic and hydrophobic droplets resting on a horizontal plane. We enforce contact angles via 
12

the approach advocated in [22], with angles ranging from 10 to 170 degrees.
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Fig. 12. Interface reconstruction with mesh cutting. Configuration 3. Top row: coarse mesh (𝑁 = 16); bottom row: fine mesh (𝑁 = 32). Left: structured mesh; right: 
unstructured mesh (with zoom on the triple-point).

Fig. 13. Interface reconstruction with mesh cutting. Configuration 3. Convergence of relative volume error.

In a first step, we focus on a 2D geometrical setup in a domain Λ = (−4, 4) × (0, 2) [𝑚𝑚]. We consider a structured and symmetric 
finite element mesh with 𝑁 discretization points along the 𝑥-direction such that ℎ𝑓𝑒 = 8∕𝑁 and ℎ𝑐𝑒𝑙𝑙𝑠 = ℎ𝑓𝑒∕4; we are interested in 
the stationary solution of an evolutive problem approximated with adaptive time steps such that CFL =max

(|𝐯𝑛
ℎ𝑐𝑒𝑙𝑙𝑠

|𝜏𝑛∕ℎ𝑐𝑒𝑙𝑙𝑠) ≤ 1.

We consider a single fluid phase with density 𝜌 = 10−6 [kg m−3] and viscosity 𝜇 = 10−4 [Pa s] and the droplet is initialized as a 
half disk of radius 1 [mm] centered at the origin. The surface tension coefficient is set to 𝛾01 = 0.07 [N/m].

Fig. 18 shows the profile of the stationary interface Γ0,1 for various angles and discretization parameters. We can observe that the 
algorithm can reproduce a large range of shapes for various contact angles. Fig. 19 shows the error between the expected and the 
approximate values of the contact angles at stationary solutions. The approximate contact angle is computed as 𝜃 = arcsin(𝑑∕(2𝑅)), 
where 𝑑 and 𝑅 are respectively the droplet diameter and the radius of the circle that fits (in a least-squares sense) the free surface. One 
can see that the algorithm reaches a very good accuracy for angles ranging from 50 to 130 degrees. Then the accuracy deteriorates 
for larger/smaller angles. The lack of accuracy is coming from the mesh approximation and does not vanish, even when refining the 
meshes. The numerical approximation of the contact angle is always more conservative than the real value. The order of magnitude 
of the walltime for such 2D calculations is about 8 [min] (when 𝑁 = 32), 16 [min] (when 𝑁 = 64), and 48 [min] (when 𝑁 = 128).

In a second step, we focus on a full 3D geometrical setup in a domain Λ = (−4, 4) × (−4, 4) × (0, 2) [mm] with the same fluid 
13

properties and discretization parameters. The droplet is initialized as the hemisphere of radius 1 [mm] centered at the origin.
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Fig. 14. Single vortex test case with period 𝑇 = 2. Representation of the computed interfaces at times 𝑡 = 0 (initial shape, left), 𝑡 = 1 (maximal deformation, middle) 
and 𝑡 = 2 (return to initial shape, right). First row : visualization on the structured grid; Second row : visualization on the finite element mesh after the cut-cell 
post-processing.

Fig. 15. Lock-exchange experiment. Snapshots of the numerical approximation of 𝜑1 and 𝜑2 at times 𝑡 = 0, 0.1, 0.2, 0.5, 1.0, 2.0, 3.0 [s] with 𝑁 = 80. Left column: 
evolution of the dense front when the denser fluid is located on the left; right column: evolution of the light front when the lighter fluid is located on the left.

Fig. 20 visualizes snapshots of the approximated stationary droplet surface for various values of the contact angle. Fig. 21 (first 
row) shows again the profile of the stationary interface for various contact angles and discretization parameters, in a vertical cut. 
Conclusions are similar as those for the 2D case. Fig. 21 (second row) shows the re-centered trace of the contact surface of the droplet 
on the horizontal plane at stationary solution. We can observe that this contact surface is indeed formed by concentric circular shapes 
and that its accuracy increases when 𝑁 increases. Finally, Fig. 22 shows the error between the expected and the approximate values 
of the contact angle. We reach the same conclusion that the algorithm provides very good accuracy for contact angles ranging from 
50 to 130 degrees. The order of magnitude of the walltime for such 3D calculations is about 16 [min] (when 𝑁 = 32) and 300 [min] 
(when 𝑁 = 64).

5.5. 2D emulsion processes

Finally, we address the simulation of emulsion processes in a cross-junction microchannel as illustrated in Fig. 1. We consider 
the same setup as in [3], where the subscript ‘d’ refers to the dispersed phase (𝜑1) injected in the main horizontal channel of width 
𝑤𝑑 = 200 [μm] and the subscript ‘c’ refers to the continuous phase (𝜑2) introduced in the two lateral channels of width 𝑤𝑐 = 100 [μm]. 
The length of the channels before the cross-junction is 𝑤𝑑 and 𝑤𝑐 respectively, while the length of the channel downstream the cross-
junction is equal to 17𝑤𝑐 = 1700 [μm]. The goal is to investigate the droplet formation mechanism and compare our results with 
those presented in [3].

For a given geometry, the process parameters are the inlet volumetric flow rates (𝑄𝑑 and 𝑄𝑐 ), the fluid densities (𝜌𝑑 and 𝜌𝑐 ) 
and viscosities (𝜇𝑑 and 𝜇𝑐), and the surface tension 𝛾12. The droplet diameter 𝑑 = 𝑑(𝐶𝑎, 𝑄, 𝜆), defined as the diameter of the disk 
14

that has the same surface as the droplet, is governed by three dimensionless numbers [3]: the capillary number 𝐶𝑎 = 𝑢𝑐𝜇𝑐

𝛾12
= 𝑄𝑐𝜇𝑐

2𝑤𝑐𝛾12



Journal of Computational Physics 504 (2024) 112846A. Caboussat, J. Hess, A. Masserey et al.

Fig. 16. Lock-exchange experiment. Time evolution of the interface fronts. Left column: dense front; right column: light front. Top row: with adaptive mesh cutting 
algorithm; bottom row: without adaptive mesh cutting algorithm.

Fig. 17. Lock-exchange experiment. Convergence orders for the approximation of the time evolution of the dense and light fronts, with and without adaptive mesh 
cutting algorithm.

describing the ratio between viscous and surface tension forces, where 𝑢𝑐 is the average inlet velocity of the continuous phase; the 
flow rate ratio 𝑄 = 𝑄𝑑

𝑄𝑐
, and the viscosity ratio 𝜆 = 𝜇𝑑

𝜇𝑐
. The Reynolds number 𝑅𝑒 = 𝜌𝑐𝑢𝑐𝑤𝑐

𝜇𝑐
, describing the ratio between inertial and 

viscous forces, remains small (𝑅𝑒 < 2) and therefore has negligible effect on the droplet formation for the flow regimes considered 
in the present study.

The geometry is the one illustrated in Fig. 1. It is discretized with 𝑁 = 11 finite elements in the width of the main channel such 
that ℎ𝑓𝑒 =𝑤𝑑∕𝑁 . We choose ℎ𝑐𝑒𝑙𝑙𝑠 = ℎ𝑓𝑒∕4 and the time step is adapted in order to target a unitary CFL number.

Numerically, parabolic velocity profiles are imposed on the three channel inlets, a free outflow condition is enforced on the main 
channel outlet, and no-slip conditions are enforced on the rest of the boundary. At time 𝑡 = 0, the horizontal inlet tube is filled with 
the dispersed phase (𝜑0

𝑑
(𝐱) = 1 if 𝑥 ≤ −𝑊𝑐2 , zero otherwise), while the rest of the domain Λ (two vertical inlet tubes and horizontal 

outlet tube) is filled with the continuous phase. The velocity field is initialized to zero. Piecewise constant values of those fields are 
enforced on each grid cell. In order to be consistent with [3], in the following the working units are 𝐿0 = 10−5 [m] (length scale), 
𝑇0 = 10−6 [s] (time scale) and 𝑀0 = 10−12 [kg] (mass scale).

5.5.1. The effect of the capillary number

In a first step, we study the effect of the capillary number on the droplet diameter. As in [3] we consider 𝜌𝑑 = 𝜌𝑐 = 1, 𝜇𝑐 = 0.08, 
15

𝜆 = 1∕4 and 𝛾12 = 0.016. For fixed values of 𝑄𝑑 , we control 𝐶𝑎 by only varying 𝑄𝑐 .
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Fig. 18. Contact angles in a 2D setup. Snapshots of the stationary droplet shape for several values of the contact angle. Top: 𝑁 = 32; middle: 𝑁 = 64; bottom: 𝑁 = 128.

Fig. 19. Contact angles in a 2D setup. Approximation error between the exact and approximate values of the contact angle.

The formation of one droplet is illustrated in Fig. 23, where snapshots of the emulsion process are shown at several time steps 
for 𝑄𝑑 = 0.004 and 𝐶𝑎 = 0.02 and 0.06. We can observe the three stages of droplet formation, identified in [3] as expansion (row 1), 
necking (rows 2-3) and figuration (rows 4-6). As expected, a smaller capillary number generates larger droplets.

Fig. 24 illustrates the diameter and spacing of droplets over time, for several flow rates of the dispersed phase and various 
capillary numbers. The droplets are identified as connected components of the dispersed phase (computed with a depth-first-search 
algorithm). Each point corresponds to the moment at which a new droplet is created. One can observe that the diameter and the 
frequency between the droplets are quite regular in all regimes.

Fig. 25 illustrates the average droplet diameter as a function of the capillary number, for several values of 𝑄𝑑 . The numerical 
results are compared with those presented in [3]. At the moment, our numerical model is not capable of imposing complete wet-
ting/non-wetting conditions on the boundary of the main channel, and therefore it is impossible to generate big droplets for which 
𝑑 > 𝑤𝑑 (i.e. when 𝐶𝑎 < 0.015) as they eventually enter in contact with the boundary of the computational domain. When the cap-
illary number is between 0.015 and 0.035, our numerical results are appropriately overlapping with those in [3]. Numerical results 
can also be provided for larger values of 𝐶𝑎 and show a coherent fit with the literature results.

Fig. 26 illustrates the average time interval between successive droplets breakups, as a function of the capillary number and for 
several values of 𝑄𝑑 . We observe that the interval decreases when 𝐶𝑎 increases, and is nearly constant with respect to 𝐶𝑎 when 𝑄𝑑
16

is large.
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Fig. 20. Contact angles in a 3D setup. Snapshots of the approximated stationary droplet surface for various values of the contact angle. (𝑁 = 64).

Fig. 21. Contact angles in a 3D setup. Top: droplet shape for several values of the contact angle. Bottom: Contact surface of the droplet on the horizontal plane. Left: 
𝑁 = 32; right: 𝑁 = 64.

Fig. 27 illustrates the location of the droplets breakup (on the horizontal axis), as a function of the capillary number and for 
several values of 𝑄𝑑 . When the capillary number increases (larger lateral velocity, smaller droplets), one can see that the breakup 
location is constant for all values of the dispersed flow rate 𝑄𝑑 . When it becomes smaller, the breakup location has a tendency to be 
further away from the cross-junction of the channels.

5.5.2. The effect of the flow rates ratio

In a second step, we study the effect of the flow rate ratio 𝑄. As in [3], we keep the same density and viscosity for both fluids but 
we now consider 𝛾12 = 0.010. For fixed values of the flow rate ratio 𝑄, we control 𝐶𝑎 by varying 𝑄𝑐 and deduce 𝑄𝑑 accordingly.

Droplet regimes are illustrated in Fig. 28, where snapshots are shown for two values of the capillary number and three values of 
𝑄. The color code corresponds to the index of the connected components of the dispersed phase, when tracking the various droplets. 
We observe that, when 𝑄 decreases, the time interval between droplets’ breakups increases. On the other hand, the capillary number 
17

governs the size and frequency of the droplets. Fig. 29 illustrates the diameter and frequency of droplets over time, for 𝐶𝑎 = 0.16
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Fig. 22. Contact angles in a 3D setup. Approximation error between the exact and approximate values of the contact angle.

Fig. 23. Emulsion in 2D configuration. Snapshots of the numerical approximations of 𝜑1 and 𝜑2 when 𝑄𝑑 = 0.004 and 𝐶𝑎 = 0.02 (left) or 𝐶𝑎 = 0.06 (right).

and several values of the flow rate ratio. The droplet regime is very regular for larger values of 𝑄, but a remarkable pattern can be 
observed when 𝑄 = 1∕16 as two smaller droplets are consistently and repeatedly following a larger one.

Fig. 30 visualizes the relationship between the average droplet diameter and the capillary number, including a comparison with 
the results from [3]. Again, our numerical results are only obtained for droplets whose diameter is smaller than the main channel 
diameter (i.e. for 𝐶𝑎 > 0.02). The results overlap for 𝐶𝑎 < 0.04, and the trend is identical. The droplet diameters remain different 
for different values of 𝑄. Moreover, another limitation of our model is that we only observe droplet breakups for 𝑄 < 1∕6. Finally, 
Fig. 31 visualizes the average time interval between successive droplets (left) and the average breakup location (right). We remark 
that the time interval increases when the capillary number decreases (lower inflow velocities), but the general trend is independent 
of 𝑄 when 𝐶𝑎 takes larger values. Similarly, the location of the breakup is further from the cross-junction when the capillary number 
decreases, meaning that the droplet takes more space to breakup. This location depends strongly on 𝑄 for small values of 𝐶𝑎.

5.6. 3D emulsion processes

Finally, let us expand our numerical results to a full 3D geometry. We now consider two cylinders intersecting each other 
perpendicularly as visualized in Fig. 32. Both cylinders have equal diameter 𝑤𝑑 =𝑤𝑐 = 0.1 [mm]. All inlet channels have a length of 
0.05 [mm], while the outlet channel has a length of 0.85 [mm].

The inflow rates are given by 𝑄𝑑 = 0.048 [mm3/s] and 𝑄𝑐 = 0.768 [mm3/s]. The physical parameters of the two phases are given 
by 𝜌𝑑 = 𝜌𝑐 = 1000 [kg/m3], 𝜇𝑑 = 0.05 [Pa s], 𝜇𝑐 = 0.001 [Pa s] and 𝛾12 = 0.01 [N/m]. No-slip boundary conditions are enforced 
on the lateral walls. Fig. 33 illustrates snapshots of the numerical solution (dispersed phase) at two time steps Fig. 34 illustrates 
snapshots of the numerical solution (dispersed phase) at several time steps, and from a top and side views. One can observe that the 
18

numerical solution on rows number 4 and number 8 are very similar, which illustrates the periodicity of the process.
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Fig. 24. Emulsion in 2D configuration. Droplets diameter over time for several flow rates of the dispersed phase and various capillary numbers.

Fig. 25. Emulsion in 2D configuration. Droplet diameter as a function of the capillary number for several flow rates of the dispersed phase. Comparison with results 
from [3].
19

Fig. 26. Emulsion in 2D configuration. Influence of capillary number on the average time interval between successive droplets.
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Fig. 27. Emulsion in 2D configuration. Influence of capillary number on the estimated breakup position.

Fig. 28. Emulsion in 2D configuration. Snapshots of the numerical approximation of Ω1 and Ω2 . The color code corresponds to the index of the connected components 
of the dispersed phase, when tracking the various droplets. Left: 𝐶𝑎 = 0.08; right: 𝐶𝑎 = 0.16. From top to bottom: 𝑄 = 1∕8, 𝑄 = 1∕12, 𝑄 = 1∕16.
20

Fig. 29. Emulsion in 2D configuration. Droplet diameter over time for 𝐶𝑎 = 0.16 and several flow rate ratios.
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Fig. 30. Emulsion in 2D configuration. Droplet diameter as a function of the capillary number for several flow rate ratios. Comparison with results from [3].

Fig. 31. Emulsion in 2D configuration. Left: influence of capillary number on the averaged time interval between successive droplets. Right: influence of capillary 
number on the averaged breakup position.

Fig. 32. Emulsion in 3D configuration. Sketch of the geometrical setup and illustration of the mesh.

6. Conclusion and perspectives

A mathematical model for the approximation of multiphase flows with free surfaces and strong interfacial effects has been 
presented. A numerical method relying on operator splitting and a two-grid method has been detailed. Emphasis has been put on 
a mesh cutting algorithm to locally adapt the mesh around the interfaces and thus approximate more accurately the surface forces. 
Numerical experiments have allowed to validate the model, and a sensitivity analysis of the parameters in emulsion processes has 
been presented. At this point, the numerical drawback of the algorithm is that there is no droplet breakup if the ratio between inflow 
velocities is too small, and the lack of pure wetting/non-wetting conditions does not allow to generate larger droplets filling the 
width of the channel. Moreover, there is no explicit treatment of triple-points in the algorithm, especially in the cut-cell method, and 
the current heuristics could be adapted in the future. Perspectives also include the numerical simulation of such multiphase flows 
but with several, non-Newtonian, rheologies.
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Fig. 33. Emulsion in 3D configuration. Snapshot of the numerical approximation of the dispersed phase.
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Appendix A. Redistribution-decompression algorithm

1. Extraction of the fluid excess from over-filled cells. Let 𝐵𝑛+1𝓁 denote a buffer for each phase 𝓁 = 1, … , 𝐿. For each cell 
𝐶 ∈ ℎ𝑐𝑒𝑙𝑙𝑠 such that 𝜑𝑛+1

ℎ𝑐𝑒𝑙𝑙𝑠
(𝐶) > 1:

(i) Compute excess of the phase 𝓁: 𝑒𝓁 ∶= (𝜑𝑛+1
ℎ𝑐𝑒𝑙𝑙𝑠

(𝐶) − 1)
𝜑𝑛+1
𝓁,ℎ𝑐𝑒𝑙𝑙𝑠

(𝐶)

𝜑𝑛+1
ℎ𝑐𝑒𝑙𝑙𝑠

(𝐶)
;

(ii) Update phase VOF: 𝜑𝑛+1𝓁,ℎ𝑐𝑒𝑙𝑙𝑠
(𝐶) ⟵ 𝜑𝑛+1𝓁,ℎ𝑐𝑒𝑙𝑙𝑠

(𝐶) − 𝑒𝓁 ;

(iii) Update phase buffer: 𝐵𝑛+1𝓁 ⟵𝐵𝑛+1𝓁 + 𝑒𝓁 .

The phase buffers 𝐵𝑛+1𝓁 are completed with leftovers from the previous time step (𝐵𝑛𝓁) or with fluid lost in cells that flew out 
22

of the domain during the convection step at iteration 𝑛 + 1.
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Fig. 34. Emulsion in 3D configuration. Snapshots of the numerical solution at several time steps. Left: lateral view; right: top view.

2. Redistribution of the excess according to phase ratio. For each cell 𝐶 ∈ ℎ𝑐𝑒𝑙𝑙𝑠 such that 0 < 𝜑𝑛+1
ℎ𝑐𝑒𝑙𝑙𝑠

(𝐶) < 1, in decreasing 
order:

(i) Compute the amount of phase 𝓁 redistributed in cell 𝐶 : 𝑟𝓁 ∶= min(𝐵𝑛+1𝓁 , (1 −𝜑𝑛+1
ℎ𝑐𝑒𝑙𝑙𝑠

(𝐶))
𝜑𝑛+1
𝓁,ℎ𝑐𝑒𝑙𝑙𝑠

(𝐶)

𝜑𝑛+1
ℎ𝑐𝑒𝑙𝑙𝑠

(𝐶)
);

(ii) Update phase VOF: 𝜑𝑛+1𝓁,ℎ𝑐𝑒𝑙𝑙𝑠
(𝐶) ⟵ 𝜑𝑛+1𝓁,ℎ𝑐𝑒𝑙𝑙𝑠

(𝐶) + 𝑟𝓁 ;

(iii) Update phase buffer: 𝐵𝑛+1𝓁 ⟵𝐵𝑛+1𝓁 − 𝑟𝓁 .

3. Redistribution of the excess according to phase order. If needed, for each cell 𝐶 ∈ ℎ𝑐𝑒𝑙𝑙𝑠 such that 0 < 𝜑𝑛+1
ℎ𝑐𝑒𝑙𝑙𝑠

(𝐶) < 1, in 
decreasing order:

(i) Compute the amount of phase 𝓁 redistributed in cell 𝐶 : 𝑟𝓁 ∶= min(𝐵𝑛+1𝓁 , (1 −𝜑𝑛+1
ℎ𝑐𝑒𝑙𝑙𝑠

(𝐶));
(ii) Update phase VOF: 𝜑𝑛+1𝓁,ℎ𝑐𝑒𝑙𝑙𝑠

(𝐶) ⟵ 𝜑𝑛+1𝓁,ℎ𝑐𝑒𝑙𝑙𝑠
(𝐶) + 𝑟𝓁

(iii) Update phase buffer: 𝐵𝑛+1𝓁 ⟵𝐵𝑛+1𝓁 − 𝑟𝓁

When some phase is less present than the other ones, or when the domain if full of liquid (Ω(𝑡) = Λ), it may happen that 𝐵𝑛+1𝓁 > 0
for some 𝓁 after the above decompression algorithm. We present a correction step to completely redistribute the buffer of some 
phases chosen a priori (at the expense of other phases).

Let  ∶= {1, … , 𝐿} denote the set of all phase indices,  ⊂  be the subset of phases whose excess must be completely redis-
tributed, and ̃ ∶=∖ be the subset of remaining phases. The correction step is implemented as follows:

4. Correction to favor some phases. Let 𝜀 ≪ 1 be a given tolerance. For each phase 𝓁 ∈  and as long as 𝐵𝑛+1𝓁 > 𝜀,
23

(a) Let 𝓁 ∶= {𝐶 ∈ ℎ𝑐𝑒𝑙𝑙𝑠 ∶ 0 < 𝜑𝑛+1𝓁,ℎ𝑐𝑒𝑙𝑙𝑠
(𝐶) < 1} be the set of cells that already contain and are not full of phase 𝓁.
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(b) Let 𝑂𝓁 ∶=
∑
𝐶∈𝓁

𝜑𝑛+1𝓁,ℎ𝑐𝑒𝑙𝑙𝑠
(𝐶) denote the total space occupied by phase 𝓁.

(c) Let 𝐴𝓁 ∶=
∑
𝐶∈𝓁

∑
𝑖∈̃
𝜑𝑛+1
𝑖,ℎ𝑐𝑒𝑙𝑙𝑠

(𝐶) denote the total space available for phase 𝓁.

(d) If 𝐴𝓁 < 𝜀, break.
(e) For each cell 𝐶 ∈ 𝓁 ,

(i) Let 𝑎𝓁 ∶=
∑
𝑖∈̃
𝜑𝑛+1
𝑖,ℎ𝑐𝑒𝑙𝑙𝑠

(𝐶) be the available space for phase 𝓁 in 𝐶 .

(ii) Let 𝑟𝓁 ∶= min(𝑎𝓁 , 𝐵𝑛+1𝓁 ⋅𝜑𝑛+1𝓁,ℎ𝑐𝑒𝑙𝑙𝑠
(𝐶)∕𝑂𝓁) be the amount of phase 𝓁 that will be redistributed in cell 𝐶 .

(iii) For each phase 𝑖 ∈ ̃,

(a) Let 𝑒𝑖 ∶= 𝑟𝓁 ⋅ 𝜑𝑛+1
𝑖,ℎ𝑐𝑒𝑙𝑙𝑠

(𝐶)∕𝑎𝓁 be the amount of phase 𝑖 that will be extracted from cell 𝐶 in order to make room 
for phase 𝓁.

(b) Update 𝜑𝑛+1
𝑖,ℎ𝑐𝑒𝑙𝑙𝑠

(𝐶) ⟵ 𝜑𝑛+1
𝑖,ℎ𝑐𝑒𝑙𝑙𝑠

(𝐶) − 𝑒𝑖
(c) Update 𝐵𝑛+1

𝑖
⟵ 𝐵𝑛+1

𝑖
+ 𝑒𝑖

(iv) Update 𝜑𝑛+1𝓁,ℎ𝑐𝑒𝑙𝑙𝑠
(𝐶) ⟵ 𝜑𝑛+1𝓁,ℎ𝑐𝑒𝑙𝑙𝑠

(𝐶) + 𝑟𝑖
(v) Update 𝐵𝑛+1𝓁 ⟵ 𝐵𝑛+1𝓁 − 𝑟𝑖

Finally, if there exists 𝑖 ∈ ̃ such that 𝑖 ≠ ∅, apply a second time the decompression algorithm from [14] (Step 1.-3. above).
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