
Received 6 February 2024, accepted 1 April 2024, date of publication 5 April 2024, date of current version 15 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3385428

Joint Allocation of Buffer Sizes and Service Times
in Unreliable Assembly-Disassembly Systems
KHELIL KASSOUL AND NAOUFEL CHEIKHROUHOU , (Senior Member, IEEE)
Geneva School of Business Administration, University of Applied Sciences Western Switzerland (HES-SO), 1227 Geneva, Switzerland

Corresponding author: Khelil Kassoul (khelil.kassoul@hesge.ch)

This work was supported by the Swiss National Science Foundation under Grant 100018_182244.

ABSTRACT This paper introduces a modeling methodology for Assembly/Disassembly (AD) systems,
proposing an effective simulation-based optimization approach. The objective is to simultaneously determine
optimal allocations of service times and buffer sizes within unreliable AD systems, ultimately aiming
to maximize the production rate. Our method integrates a global search approach, Genetic Algorithm
(GA), with a local search method, Finite Perturbation Analysis (FPA). Through this integration, we extract
production rate gradient information based on system parameters, which is then incorporated into a stochastic
optimization algorithm to simultaneously identify the best allocation of service times and buffer sizes. The
proposed approach is applied to various instances of AD systems, and experiments are conducted to assess its
performance. The results demonstrate the superior performance of the integrated GA-FPAmethod compared
to the standalone GA and FPA methods, both in terms of convergence behavior and solution quality. The
identified allocation patterns and the potential to expand our approach to other complex manufacturing
systems can provide valuable insights for managers seeking to establish more sustainable and efficient
assembly and disassembly systems.

INDEX TERMS Assembly/disassembly systems, finite perturbation analysis, genetic algorithm, simulation,
simultaneous allocation.

I. INTRODUCTION
Amanufacturing system is a collection of machines, buffers
for storage, conveyors, parts for transportation, and other
components that work together to produce goods [1]. Pro-
duction is the process through which an item is transformed
to raise its worth [2]. A wide number of industrial systems
may be represented as high-volume Assembly/Disassembly
(AD) systems of unreliable machines and finite buffers [3].
In these systems, the machines are responsible for assem-
bling, disassembling, or manufacturing items by specified
designs. Generally, these systems provide products of differ-
ent natures that can be items from disassembling operations,
sub-products from assembling processes, or final products
due to the combination of assembly, disassembly, and manu-
facturing. In the context of the circular economy, AD systems
are purposefully designed to incorporate the reuse of used

The associate editor coordinating the review of this manuscript and

approving it for publication was Fabrizio Messina .

products or their components in the creation of new ones,
including the production of refurbished products. These sys-
tems are versatile, supporting various economic scenarios
such as disassembly operations (e.g., reusing sub-products,
recycling) and assembly operations (e.g., assembling elec-
tronic cards, constructing automobiles). Within these intri-
cately interconnected manufacturing systems, random events
like difficulties in manual operations, quality issues, machine
breakdowns, and variations in processing times across diverse
system points can lead to temporary halts in machine opera-
tions. These disruptions significantly impact the operational
efficiency of manufacturing systems. Even minor changes in
design specifications may result in considerable performance
losses. For instance, in a workshop employing a No-Wait
rule, where any stoppage of machines immediately affects the
Production Rate (PR), the system exhibits a fragile dynamic
response to accommodate random interruptions [4].

The term buffer size refers to dedicated buffer locations
between machines, physical floor restrictions, or the capacity

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 50723

https://orcid.org/0000-0002-0792-0534
https://orcid.org/0000-0003-2497-2528
https://orcid.org/0000-0002-3685-3879

K. Kassoul, N. Cheikhrouhou: Joint Allocation of Buffer Sizes and Service Times

of transportation and conveying systems. It is then essential
to consider various scenarios where products are heavy or
bulky, even while it may not be expensive to execute con-
siderable variations in buffer capacity in some situations.
Therefore, when designing production systems, it is crucial
to consider buffer size and appropriate service time alloca-
tion for each machine. Optimizing these factors can reduce
investment costs and increase the PR. Hence, exploring meth-
ods to optimize buffer space and service time allocations is
advantageous. Indeed, the design and optimization of man-
ufacturing systems have been the goal of several studies [5],
[6], [7], where the Buffer Allocation Problem (BAP) has been
a significant subject of these studies over the past 30 years.
While there have been extensive studies on the design of
manufacturing systems, there has been a notable scarcity of
research dedicated to addressing the Simultaneous Buffer and
Service Time Allocation Problem (BSTAP).

This paper proposes a hybrid methodology for AD systems
that combines Genetic Algorithm (GA) and Finite Pertur-
bation Analysis (FPA) techniques. The developed algorithm
uses FPA as a local search to estimate the gradients of PR
and GA as a global search to generate the input solutions.
The diversification and exploration abilities of GA provide
quick access to the areas of the (near-) optimal solutions.
FPA is utilized for exploitation and intensification in these
areas to improve solutions further. Moreover, this approach
can converge in a single simulation run, decreasing the con-
vergence time [8]. The combination of FPA and GA is one of
this article’s contributions when allocating buffer sizes and
service times simultaneously in the case of AD systems.

The following sections of this paper are organized as fol-
lows: In Section II, we provide a review of the literature about
AD systems and related works. Section III introduces the
mathematical formulation and describes the solution strategy.
The development of the optimization approach is provided
in Section IV. Section V presents the numerical experiments
carried out and the discussions of the results. Finally, con-
clusions and suggestions for future research directions are
provided in Section VI.

II. LITERATURE REVIEW
In addition to the detailed examination of serial manufactur-
ing lines, AD systems have also been subject to extensive
study and analysis [9], [10]. The literature widely recognizes
allocation problems, including the BAP and STAP, for their
challenging combinatorial complexity [11]. This literature
review is organized into three subsections. Subsection II-A
is focused on buffer allocation problems, considering
assembly systems with reliable and unreliable machines.
Subsection II-B is related to the simultaneous allocation of
buffer capacities and service times in assembly disassembly
systems. Subsection II-C highlights our contribution.

A. BUFFER ALLOCATION IN RESEARCH STUDIES
BAP has been a central theme of several studies on the
optimization and design of manufacturing systems. In a study

conducted by Powell and Pyke [12], the authors explore
the domain of basic asynchronous reliable assembly systems
characterized by variable processing times. They contribute
by formulating heuristic rules, which are unveiled through
simulation analysis, to enhance system performance. The
study concentrates on assessing the sensitivity of the initial
buffer’s placement concerning parameters linked to process-
ing time distributions. In a parallel effort, Fuxman [13]
introduces an analytical model that tackles the determination
of the optimal allocation of buffer storage in the assembly
line with reliable machines. The author presents the Buffer
Elimination Algorithm (BELA) as an efficient tool for identi-
fying optimal buffer configurations. To measure the system’s
throughput, Levner’s graph is utilized in the analysis. Yamada
et Matsui [14] explore a design approach for assembly sys-
tems, taking into account demand fluctuations, lead time,
and cost considerations. Employing an iterative simulation
method, the study determines optimal buffer sizes at each
station to minimize buffer and overflow costs, utilizing a
complex optimization approach. Hemachandra and Eedupu-
ganti [15] suggest an approach to enumerate the state space
as a solution method for handling finite storage in queuing
models for assembly systems. The study considers objectives
such as minimizing Work In Progress (WIP) and maximizing
the PR, all while determining optimal buffer configurations.
Shaaban et al. [16] concentrate on assessing the performance
of reliable, unpaced merging assembly lines distinguished by
asymmetric buffer storage sizes. Through the use of simula-
tions, the authors investigate various configurations, which
include variations in mean buffer storages, and imbalanced
buffer allocations. Their findings indicate that, in specific
setups of merging lines, it is feasible to achieve equivalent
throughput performance between asymmetrical buffer pat-
terns and merging lines with balanced buffers. Conversely,
statistically significant superior performance is observed
in terms of average buffer length in numerous configura-
tions. The study underscores the significant potential for
cost savings associated with maintaining an average buffer
level throughout the lifespan of the production system. This
suggests that intentionally allocating asymmetrical buffers
between stations may represent a worthwhile and strategic
approach.

Bulgak [17] investigates the optimal allocation of
inter-stage buffers in split-and-merge assembly systems
with unreliable machines. The study employs simulation
models and genetic algorithms to identify optimal buffer
configurations. Additionally, the research proposes the
use of simulation based on artificial neural networks to
enhance computational efficiency in the optimization pro-
cess. Chehade et al. [18] present an approach that deals with
the BAP in assembly systems, employing a multi-objective
solution strategy. The study employs a multi-objective ant
colony optimization algorithm, incorporating Lorenz domi-
nance in the optimization process. Through this approach, the
research considers the simultaneous objectives of minimizing
the total buffer size and maximizing the PR. Bertazzi [19]

50724 VOLUME 12, 2024

K. Kassoul, N. Cheikhrouhou: Joint Allocation of Buffer Sizes and Service Times

examines a two-line assembly production system with break-
downs and delays, developing a model to establish the
optimal buffer capacity allocations. An exact algorithm is
proposed and applied to a real-world problem, aiming to
minimize storage costs and costs associated with delays and
breakdowns during the process. Alfieri et al. [20] introduce a
novel row-column generation algorithm designed for the allo-
cation of buffer sizes in flow lines and assembly/disassembly
lines. This algorithm leverages the theoretical properties of
the time buffer approximation. In a comparative analysis, the
researchers benchmarked their proposed algorithm against
a standard Linear Programming (LP) solver and a state-of-
the-art Mixed-Integer Linear Programming (MILP) solver.
The results indicate that, in most instances, the introduced
algorithm outperforms the LP solver. Moreover, it demon-
strates superior robustness compared to the MILP solver,
especially in terms of computation time. These findings
suggest the effectiveness and efficiency of the presented
row-column generation algorithm for buffer size allocation
across various line configurations.

B. SIMULTANEOUS ALLOCATION BSTAP
The challenges and issues within the BAP still exist, and the
complexity of the analysis is further heightened by the exten-
sion of the study to the simultaneous allocation of BSTAP.
Subsequently, Tempelmeier [21] introduces a decomposi-
tion technique for the appropriate allocation of buffers in a
real-world automobile body assembly shop. This technique
takes into account both variable and deterministic service
times. The author adopts an approach where an initial target
PR is chosen to reduce the total buffer size. Subsequently,
the entire buffer value is fixed to maximize the previously
determined target PR. To achieve this target PR, the service
duration of each station is minimized. This method offers a
systematic approach to buffer allocation in the context of a
practical assembly setting. Smith [22] investigates the allo-
cation patterns in the context of merge topologies and small
split to solve simultaneously the workload and buffer sizes
allocation for various small queueing networks with reliable
machines using a quadratic programming technique. The
primary objective of the study is to ascertain whether there
are discernible patterns in service time and buffer allocation,
investigating whether these patterns persist or are absent. The
allocation schemes identified in the study align with certain
aspects reported in [23].

Spieckermann et al. [24] employ a genetic algorithmwithin
a simulation model to tackle a real-world buffer planning
problem in a vehicle body assembly station. The optimiza-
tion objective of this study incorporates considerations for
service time variability, buffer sizes, and deviations from the
upper bounds for service durations. The primary aim of the
optimization process is to minimize the objective function,
achieved through the adjustment of service times at each
station and the overall buffer sizes in use. This approach
aims to enhance the efficiency of the assembly station by

optimizing both service times and buffer sizes in the face
of practical operational challenges. The authors conduct a
case study involving a vehicle manufacturer to assess the
suggested methodology. They conclude, aligning with the
car’s planning engineers, that the design process may be
improved by using simulation-based optimization.

Cruz et al. [25] utilize a multi-objective genetic algorithm
to address the simultaneous goals of minimizing the total
number of buffers, maximizing the throughput rate, and
minimizing the overall server rate within general service
queueing networks. The authors employ the generalized
expansion method (GEM) to assess the algorithm’s perfor-
mance, with their focus not necessarily centered on designing
allocation patterns. Through the integration of the GEM
with a multi-objective evolutionary algorithm (MOEA), the
researchers successfully generated informative Pareto curves.
These curves serve as effective visualizations, revealing the
intricate tradeoffs between throughput, total buffer alloca-
tion, and overall service allocation. Later, Cruz et al. [26]
present an approach aimed at maximizing the PR by con-
currently minimizing both buffer spaces and service times.
The objective is to optimize the performance of generic finite
queueing networks. To achieve this, the authors employ a GA
to identify solutions for the total buffer storage and processing
times. Additionally, SA is utilized to rearrange the allocation
of buffers along the system. This involves restructuring the
entire buffer while preserving the best allocations previously
determined for service time. The combined use of GA and
SA offers a comprehensive optimization strategy for enhanc-
ing the efficiency of single-server queueing networks. The
authors evaluate their methodology using the suggested auto-
mobile assembly system of [24]. Their results demonstrate
that the evolutionary algorithm may increase the throughput
in a variety of situations.

C. PAPER CONTRIBUTION
Existing literature on AD systems optimization has primar-
ily focused on systems with reliable machines, focusing on
determining buffer sizes (BAP). Despite these efforts, there is
still a need to model and analyze these systems in the context
of unreliable machines by allocating service times simultane-
ously on the machines and buffer sizes on the available areas,
which is the goal of this article. The objective is to maximize
the system production rate within specified total constraints
for buffers and service times. The advantage lies in the con-
current selection of buffers and service times, enabling a
higher PR without additional costs. Optimal allocations for
both buffers and service times can contribute to enhanced
system production rates. Considering the correlation between
machine efficiency and upstream/downstream buffer sizes
for each machine, simultaneous allocation exploits this cor-
relation for a more effective design. This consideration is
crucial due to the substantial costs associated with investment
and strategic decisions. The challenge of allocating service
times and buffer sizes for AD systems is intensified by the

VOLUME 12, 2024 50725

K. Kassoul, N. Cheikhrouhou: Joint Allocation of Buffer Sizes and Service Times

FIGURE 1. Example of an Assembly/Disassembly system.

vast search space, even for small or moderate-sized prob-
lems. Additionally, the absence of algebraic relations between
production rates and buffer sizes further complicates the
formulation of a mathematical model. To address these com-
plexities, we extend the functionalities of GA-FPA, initially
introduced by [27]. This expansion is designed to amplify
the algorithm’s adaptability to contexts involving unreliable
AD systems characterized by finite buffers and unreliable
machines.

III. PROBLEM DESCRIPTION AND SOLVING METHOD
A. PROBLEM DESCRIPTION
An AD system is conceptualized as an open queueing net-
work, consisting of multiple machines (servers) distributed
across various stages and interconnected by buffer spaces
(refer to Fig. 1). In this configuration, each buffer serves
as a connection point between precisely two machines (one
downstream machine and one upstream machine). However,
one machine connects two or more buffers [28]. An AD
system can be deconstructed into three elementary cells: a
transfer cell (Fig. 2a), a disassembly cell (Fig. 2b), and an
assembly cell (Fig. 2c).

Fig. 1 shows an AD system comprising ten machines
(M1, . . . ,M10) and nine buffers (bij)(i= 1, . . . , 9 and
j= 2, . . . , 10), where bij denotes the buffer sizes situated
between the downstream machine Mj and the upstream
machine Mi. The system is organized into six stages repre-
senting three connection points (corresponding to assembly
or disassembly machines). An assembly (resp. disassem-
bly) machine has two or more upstream (resp. downstream)
buffers. In the given AD,M3 andM6 are assembly machines,
M7 is a disassemblymachine, and the remainingmachines are
transfer/production machines (i.e., M1,M2,M4,M5,M8, M9
andM10).M1,M2 andM5 are the input machines from which
the parts enter the system, and M8 and M10 are the output
machines from which parts leave the system.

The following assumptions provide the general rules of
functioning of the AD system:

• An AD system is a finite open queuing network with
n unreliable machines (M1, . . . ,Mn) alternating with m
finite size buffers (θ1, . . . ,θm), distributed on different
stages and where θi designates the buffer size situated
between the downstream machine Mj and the upstream
machineMi;

• Items evolve inside the system, which could produce
different families of products, and each machine can
treat several types of items;

• Each input machine seizes items from a buffer of
infinite capacity in the network topology, and each out-
put machine releases products into a buffer of infinite
capacity.

In this study, we consider that the time of operational
activity of a machine is composed of a deterministic part
(θm+1, . . . ,θn+m) and a random part since the machines
are subject to breakdown. We assume that the Mean Time
Between Failures (MTBF) times and the Mean Time to
Repair (MTTR) are geometrically distributed with respective
probabilities of pi and ri. The process is assumed to it in a
steady state (ergodic). Also, when a machine is operational
(UP), it can be Full Output (FO) or blocked (resp. Null
Input (NI) or starved) if at least one of its downstream (resp.
upstream) buffers is full (resp. empty). These proprieties hold
for transfer, assembly, and disassemblymachines.We assume
that a machine cannot fail when it is starved or blocked,
and an input (resp. output) machine cannot be starved (resp.
blocked). We define a potential FO ‘‘PFO’’ (resp. potential
NI ‘‘PNI’’) for a machine Mi as a state in which at least a
downstream (resp. upstream) buffer holds bij − 1 one (resp.
one) unit, where bij denotes the buffer size situated between
the downstream machine Mj and the upstream machine Mi.
When a machine is blocked (resp. starved), no transit of
parts is possible, all downstream (resp. upstream) stages are
blocked (resp. starved), and no routing of parts is possible.

The PR of the system is calculated on all the output
machines according to the following equation:

f (θ) =

∑
o∈O

f0(θ) (1)

The design problem addressed in this paper aims to allo-
cate Bmax across m buffers and Tmax across n machines to
maximize the average PR f (θ) of the AD system. The math-
ematical expression for this problem can be formulated as:

Find : θ = (θ1, θ2, . . . ,θn+m) to maximize f (θ) (2)

Subject to :

∑m

i=1
θi = Bmax; θi positive integer (3)∑n+m

i=m+1
θi = Tmax; θi ≥ 0 (4)

B. SOLUTION METHOD
The optimization approach proposed in this study is based on
FPA [8], [27] coupled with GA [29], [30] and represented in
Fig. 3. Indeed, combining GAwith FPA aims tomaximize the
benefits of both techniques since the optimization and simu-
lation are performed simultaneously, i.e., while GA (used as
a global search) enables to reach quickly best solutions, FPA

50726 VOLUME 12, 2024

K. Kassoul, N. Cheikhrouhou: Joint Allocation of Buffer Sizes and Service Times

FIGURE 2. Elementary cells of an AD system.

may enhance the stochastic algorithm solutions by using a
single run simulation to estimate the gradients ∂f (θ)

/
∂θi.

Fig. 3 illustrates the comprehensive optimization tech-
nique, highlighting the main steps. The first step consists
to generate the initial population, P =

(
r1, r2, . . . ,rp

)
,

which contains p distinct solutions (configurations). Each
configuration rj =

(
θj,1, θj,2, . . .θj,i, . . . ,θj,n+m

)
is obtained

randomly and uniformly (We use the generation of the initial
population as in [31]). θj,i represents the ith variable decision
of the jth configuration, where θj,i (i= 1, 2, . . . ,m) denote
the buffer sizes and θj,i (i = m+1, . . . ,n + m) denote the
service times. The PR of each individual rj is assessed using
a simulation model (Step 2). Following this, the operators of
GA are used until the termination criterium is met (Step 3).
A new population P′

=

(
r ′

1, r
′

2, . . . ,r
′
p

)
is created from

the existing population P by utilizing the operators of the
GA across multiple generations to approach a nearly opti-
mal solution (Step 4). The configurations of P’ serve as the
input for the stochastic algorithm procedure, which employs a
gradient descent method [32] to estimate the gradients of PR
∂f (θ)

/
∂θi relative to the decision variables (service times and

buffer sizes) θi(i= 1, . . . ,n+m) (Steps 5 and 6). The stochas-
tic algorithm stops when the predetermined number of parts
is achieved or when the PR does not improve with a new solu-
tion and a (near)optimal solution r∗

=
(
θ∗

1 , θ∗

2 , . . . ,θ∗
n+m

)
is

obtained (Step 7).

IV. METHODOLOGY
A. GENETIC ALGORITHM
In this study, the GA algorithm is utilized to generate ini-
tial solutions for the stochastic algorithm, aiming to obtain
a nearly optimal solution. We apply tournament selection,
an efficient and robust selection method commonly used by
GAs [33]. Initially, two individuals are randomly selected
from the current population, and their PRs, obtained by run-
ning a simulationmodel, are compared to determine the victor
for the subsequent generation.

Subsequently, two parents (individuals), p1 and p2, are
selected from the current population and linearly combined
using an arithmetic crossover operator [34] to generate two
new offspring, o1 and o2, using equations (5) and (6). In these
equations, α represents a coefficient chosen at random and
uniformly from the range [1, 0]. It is important to highlight
that an adjustment procedure is carried out to satisfy the

constraints (3), which corresponds to the mutation operator
applied in this study.

o1 = α · p1 + (1 − α) · p2 (5)

o2 = (1 − α) ·p1 + α · p2 (6)

Algorithm 1 outlines the procedure of the proposed genetic
algorithm.

Algorithm 1 Genetic Algorithm
Input: p (number of configurations or individuals), n

(number of machines) and m (number of buffers)
Output: Final population P′

Procedure:
a. Generate initial population P randomly and

uniformly with p individuals.
b. For each individual in P, do:
i. Simulate the individual using theArena simulationmodel.
ii. Calculate the Production Rate (PR) based on the simula-

tion results.
iii. Assign the calculated PR to the individual.
c. While the size of the new population P′ is less than p

individuals, repeat p
/
2 times:

- Select randomly from P two parents and use the
tournament selection to select the winner.

- Duplicate the best (winner) individual.
- Cross two parents, p1 and p2 to create two offspring
by applying the arithmetic crossover operator.

- Apply the adjustment procedure if the constraint (3) is not
satisfied.

- Injectthe found offspring, o1 and o2, in P′.

B. FINITE PERTURBATION ANALYSIS
Finite perturbation analysis is a method used to evaluate the
effect of small, finite perturbations on a system’s behavior
by studying its sample path [8]. This technique is commonly
applied in control and dynamic systems to study the sensi-
tivity of a system’s response to changes in its parameters
or inputs, allowing the design of more robust and resilient
systems. With FPA, the impact of perturbations on the per-
formance of a system can be computed from a sample path or
a Nominal Trajectory (NT) without additional experiments.
The assumption here is that after a perturbation is introduced,
subsequent interactions in the Perturbed Trajectory (PT) will
exhibit statistical similarity to those in the NT. This means
the PT does not need to be constructed or simulated, and the
NT determines the system’s response to perturbations [8].

VOLUME 12, 2024 50727

K. Kassoul, N. Cheikhrouhou: Joint Allocation of Buffer Sizes and Service Times

FIGURE 3. Global approach for the BSTAP.

In this study, the PR value is calculated by formulating
perturbation generation and perturbation propagation rules
which are intricately designed to anticipate the consequences
of changes in buffer size in the NT, providing predictions,
due to the introduction of perturbations, about the nature of
future events and their respective durations. Earlier studies on
serial manufacturing lines develop rules for generating and
propagating perturbations in transfer/production cells [31],

FIGURE 4. General disassembly process with NI periods.

[35]. In this study, we provide an overview of these rules
as applied to transfer cells (Fig. 2a), and we also introduce
new rules to extend their application to assembly/disassembly
systems.

1) RULES FOR THE GENERATION AND PROPAGATION OF
PERTURBATIONS IN TRANSFER CELLS
To analyze the system’s evolution in the PT, we suppose that
Machine Mi (resp. Mj) encounters a perturbation, denoted as
1ti (resp. 1tj), which can be either propagated or generated.
The overall value of the perturbation transmitted to Machine
Mj is expressed as follows:

1t ′j = (new starvation finish time from the PT)

− (old starvation finish time from the NT) (7)

Due to the introduction of this perturbation, several cases can
be considered:

• Equation (8) summarizes all cases of PNI/ NI:

1t ′j= max{1ti+[NI], 1tj} − max{0, [NI]} (8)

where [NI] represents a starvation interval time’s algebraic
value for the machineMj, denoted as NI = (di − dj).

• Equation (9) summarizes all cases of PFO/ FO periods:

1t ′i= max{1tj+[FO], 1ti}−max{0, [FO]} (9)

where [FO] denotes the blocking interval time’s alge-
braic value (if it exists) for the machine Mi, denoted as
FO = (di − dj).

2) RULES FOR THE GENERATION AND PROPAGATION OF
PERTURBATIONS IN DISASSEMBLY CELLS
Consider a disassembly machine Mi (as represented in
Fig. 2b) ending many NI periods at the same time on down-
stream stages. Fig. 4 shows the case when Mi terminates NI
periods onMl andMj but no NI exists onMk and no FO exists
at any stage. Arrows indicate the direction of part releasing
from one machine to the other. We define:

• di as the nominal service end time of a particular service
duration in machine i;

• dj as the nominal service end time of a particular service
duration in machine j;

50728 VOLUME 12, 2024

K. Kassoul, N. Cheikhrouhou: Joint Allocation of Buffer Sizes and Service Times

FIGURE 5. Sample nominal path of a disassembly cell with PNI.

• dis as the nominal service start time of a particular
service duration in machine i;

• djs as the nominal service start time of a particular
service duration in machine j.

Three cases can be determined to predict the perturbed path
of the overall tableau of events:

Case 1. di+1ti > dj+1tj, ∀j.Mj is NI, the perturbation is
fully propagated to every NI server, and the newly generated
perturbation is given by:

1t ′j=(di + 1ti)−di = 1ti and 1t ′k= 0 (10)

whereMk (k ̸=j) is other than a blocked or starved server.
Case 2. di + 1ti < dj + 1tj, ∀j. Mj is NI and terminated

by specific service from Mi. In that case, all NI periods are
eliminated, and we have partial propagation.

1t ′j =
(
dj + 1tj

)
− di = 1tj +

(
dj − di

)
and 1t ′k= 0.

(11)

for every NI server Mj and Mk (k ̸=j) is other than a blocked
or starved server.

Case 3. ∃M j1, . . . ,Mjn NI such that djl +1tjl < di+1ti <

djk +1tjk , (k= 1, . . . ,n and k ̸=l). This case is a combination
of the two first cases and results in:

1t ′jk =
(
djk + 1tjk

)
− di = 1tjk +

(
djk − di

)
,k= 1, . . . ,n.

(12)

1t ′jl = (di + 1ti) − di = 1ti, k ̸=l (13)

• Case of PNI and PFO periods
A similar mechanism can be observed if some servers are PNI
in the nominal path and may be converted in the perturbed
trajectory into real NI. Consider the disassembly cell of Fig. 5,
where the serverMj is PNI since the buffer bij holds a unique
part inside.
Case 1. di + 1ti > dj + 1tj. The PNI is converted into a

NI period on Mj. A NI period on Mj is created because the
perturbation is partially propagated:

1t ′j = (di + 1ti) − dj = 1ti +
(
di − dj

)
(14)

Case 2. di + 1ti≤dj + 1tj. All service event sequences
maintain their perturbation, and the PNI remains PNI periods.

1t ′j =
(
dj + 1tj

)
− dj = 1tj (15)

FIGURE 6. General assembly cell with FO and NI periods.

Similarly, the rules for perturbation propagation in the case
of PFO periods are developed.

3) RULES FOR THE GENERATION AND PROPAGATION OF
PERTURBATIONS IN ASSEMBLY CELLS
Analyzing assembly cells is interesting when FO periods
exist at different stages. FO periods may eliminate gains on
some servers, so the propagation stops. Consider an assembly
cell (as represented in Fig. 2c), where Ml is an assembly
machine, and the upstream machines Mk and Mj are FO due
to the fullness of respectively bkl and bjl . We may focus our
interest on the case where Ml is NI, when perturbations can
be propagated.

Under the same assumptions, the end of the NI period on
Ml is caused by the service end of at least one server sayMi,
the other parts are retired from different buffers. Ml’s events
sequence in a perturbed path is deduced from the sequence of
the perturbed events onMi (Fig. 6). If somehow perturbations
are created or propagated onMl and on different other stages,
three cases have to be considered:

Case 1. dl + 1tl≤di + 1ti. The NI period on Ml remains
and perturbation is fully propagated:

1t ′l = (di + 1ti) − di = 1ti (16)

Case 1.a) If there exists a FO period in the nominal path of
Mj such that dj+1tj > di+1ti, this period will be eliminated
in the perturbed path and transformed into PFO. This process
is referred to as backward propagation, in contrast to the
previously mentioned forward propagation.

1t ′j =
(
dj + 1tj

)
− di = 1tj +

(
dj − di

)
(17)

Case 1.b) If there exists a FO period in the nominal path of
Mj such that dj + 1tj < di + 1ti, the FO period remains, and
the perturbation is completely propagated:

1t ′j = (di + 1ti) − di = 1ti (18)

In other words, the determination of the new perturbation
value is influenced by the machine states in parallel stages
rather than solely relying on the perturbation value ofMl .

Case 2. dl+1tl > di+1ti. TheNI period onMl is removed
and the value of the new perturbation is:

1t ′l = (dl + 1tl) − di = 1tl + (dl − di) (19)

VOLUME 12, 2024 50729

K. Kassoul, N. Cheikhrouhou: Joint Allocation of Buffer Sizes and Service Times

FIGURE 7. General assembly cell with PNI periods.

Note that in this case, the propagated perturbation value
on Ml depends strongly on events on Mi. The case of the
existence of FO periods on stages j is resolved through cases
1.a) et 1.b). We assumed that service on Ml depends only on
a particular service end onMi and even if dl+1tl > di+1ti,
the service beginning in the perturbed path will be at di+1ti,
independent onMl events.

• Case of PNI and PFO periods
To simplify the representation of the problem and its under-
standing, we consider an assembly cell where only one period
PNI is present in the nominal path (Fig. 7). The stock bil
contains two parts until the instant dl , whenMl charges a new
piece. Thus, Ml enters a period of potential starvation, until
di, when Mi serves the stock. Depending on the amplitude
of perturbations carried by the different servers, two distinct
cases can be identified:

Case 1. dl + 1tl < di + 1ti. The perturbation on Mi is
entirely transmitted to Ml . The PNI period on Ml remains in
the perturbed trajectory.

1t ′l = (di + 1ti) − di = 1ti (20)

Case 2. dl + 1tl≥di + 1ti. The PNI period is eliminated
and the perturbation onMi is partially transmitted toMl .

1t ′l = (dl + 1tl) − di = 1tl + (dl − di) (21)

Similarly, the rules for perturbation propagation in the case
of PFO periods are developed. The system’s evolution in
a perturbed environment is predicted using these different
rules. The prediction results from a single sample trajectory
and relies on information about the state of each machine at
every event. Collectively, these rules constitute the core of the
developed FPA algorithm.

C. FPA ALGORITHM
1) BUFFER ALLOCATION ALGORITHM
Assuming that during a simulation (or an observation) of
an AD system, each output machine Mo treats a total of Lo
parts. We suppose that the simulation is long enough for the
occurrence of all potential events. The PR (denoted by f)
calculated on the time T is given as:

f =

∑
o∈O

Lo

/
T (22)

where the index O represents all system output machines:
Hence;

∂f
/
∂θi = ∂

(∑
o∈O Lo
T

)/
∂θi (23)

The simulation in this study operates under the assumption
that the termination condition is determined by the overall
parts number produced by all output machines in the system,
i.e.,

∑
o∈O Lo = L.

∂f
∂θi

= −L ·

(
1
T 2

)
·
∂T
∂θi

= −

(
L
T

)
·

(
1
T

)
·
∂T
∂θi

= −
f
T

·
∂T
∂θi

(24)

where ∂T/∂θi is the duration of perturbation affecting the sys-
tem after the generation of perturbation 1θi. We note that in
this work, a perturbation of one virtual unit buffer size is used
for evaluating the PR gradient using the FPA propagation
rules for each event. The persistence and the duration of an
event along the disturbed trajectory are predicted concerning
the repercussion of the perturbation. The value of ∂T/∂θi is
determined using the FPA. Consequently, the change in total
simulation time (1T) is computed for the output machine
responsible for completing the L parts within the perturbed
path. Hence, we can express this relationship as follows:

∂f
∂θi

= −
f
T

·
∂T
∂θi

= −
f
T

· 1T

= −
f
T

·
(
Maxo∈O

{
dofin + 1to

}
− T

)
(25)

Here, to represents the total duration of the perturbation
accumulated after processing Lo parts by the output machine
Mo. As such, 1to signifies the net gain or loss in time that is
transmitted to machineMo when a perturbation1θ_i is intro-
duced, and it is computed using the FPA rules. The expression(
Maxo∈O

{
dofin + 1to

}
− T

)
serves as an estimate for the

actual value of ∂T
∂θi

.
Algorithm 2 outlines a simplified FPA algorithm utilizing

the established rules for buffer sizes. This algorithm computes
the PR sensitivity vector concerning buffer sizes. We should
note that incorporating simultaneous perturbations on various
buffers, along with the concurrent sensitivity assessment, can
be easily executed by introducing the sum of different buffers
into the realized (global) gain.

2) SERVICE TIMES ALGORITHM
In this subsection, we present FPA for service times. With
slight modification, we use the algorithm developed by [36]
for cycle time optimization of closed-loop flexible assembly
systems. We use the perturbation analysis gradient estimator
to calculate ∂f

/
∂θi (for i= 1, . . . ,n). The main procedures of

the algorithm are summarized in three steps.
Step 1 Initialization of accumulators Aij
The initial step in calculating the gradients involves ini-

tializing the accumulator variables, denoted as Aij. These

50730 VOLUME 12, 2024

K. Kassoul, N. Cheikhrouhou: Joint Allocation of Buffer Sizes and Service Times

Algorithm 2 FPA for Buffer Sizes
Perturbations generation
Step 1

If Mi (t) is FO, i = 1, . . . , n then
Sumi = 0
(gain of time on machine i)
Select bij in (I ; J) = {1, . . . , n− 1; 2, . . . , n}
(initialization of accumulators Sumi)

Step 2 (bij is the buffer located between machine
i and machine j)

If Mi (t) is FO for the first time then
bij = bij + 1bij (in this paper 1bij = 1)
Sumi = ti · 1bij (ti is the processing
time of the machine i)

Perturbation propagation
Step 3

Case 1. If Mi is a transfer machine then
Step 3.a

If Mj (t) is PNI/NI then
Sumj = max

{
Sumi + [NI] , Sumj

}
− max {0, [NI]}

Step 3.b (not applicable to the stock’s first variation)
If Mi (t) is PFO/FO then

Sumi = max
{
Sumj + [FO] , Sumi

}
−max {0, [FO]}

Case 2. If Mi is a disassembly machine then
If Mj (t) is PNI (resp. NI, PFO, FO) then

propagate perturbation using elaborated corresponding rules
(IV.B.2)
Case 3. If Mi is an assembly machine then

If Mj (t) is PFO ≫ (resp. FO, PNI, NI) then
propagate perturbation using elaborated corresponding rules
(IV.B.3)
Step 4

If j ∈ O then
Sumj = 1t ′j/ij
O = O− {j}

Else
i = i+ 1
Go to Step 2

If O=∅ , then (O: the index of all system output
machines)

1T =
(
Maxo∈O

{
dofin + 1to

}
− T

)
Endif

Endif
Step 5

(I ; J) = (I ; J) − (i; j)
If (I ; J) = ∅ then Stop

Else Go to Step 1

accumulators are required for the initialization of the gradient
computations.

Aij= 0 for i, j= 1, . . . ,n. (26)

Step 2 Updates of accumulators
The gradient value is determined at each end of an oper-

ation (event), and the gradient of the service time ti,
dti
dθ i

,
is added to Aij. Since in this work ti = θi i.e.,

dti
dθ i

= 1,

Aii = Aii +
dti
dθ i

(27)

If a period NI on machine m comes to end due to a part
moving from machine i to machine m,

Amj = Aij j= 1, . . . ,n. (28)

If a period FO on machine i comes to end due to a part
moving from machine i to machine m,

Aij = Amj j= 1, . . . ,n. (29)

Step 3 Estimation of ∂f
/
∂θi

The value of the accumulator at the simulation’s end Ani is
used to calculate an estimate of ∂f

/
∂θi

∂f
/
∂θi= −(f

/
T)·Ani (30)

D. STOCHASTIC ALGORITHM
The developed stochastic algorithm uses the Robbins and
Monro optimization technique [37]. The (near-)optimal allo-
cation of processing times and buffer size for the AD system
is determined by injecting the gradient estimations from FPA
into the stochastic algorithm. The process initiates by select-
ing the initial values of θi (buffer sizes and service times)
for i= 1, . . . ,n + m. Subsequently, at each iteration k , the
algorithm updates the intermediate variables θi in the gradient
direction, corresponding to the generation of a perturbed path.
We use a single run optimization algorithm (i.e., at each end
production of l units (l < L), the update process is activated).
The gradients computation method based on FPA is used
throughout the configuration update process. Two iterative
stochastic algorithms are constructed for the two different
spaces (buffer sizes and service times).

θk+1
i = θki +

α

k
(∂f

/
∂θi

−
1
m

∑m

i=1
∂f

/
∂θi) (buffer sizes) (31)

θk+1
i = θki +

β

k
(∂f

/
∂θi

−
1
n

∑n+m

i=m
∂f

/
∂θi) (service times) (32)

Here, α (and β) are random constants utilized to determine
the step size for the PR.

If some values of θk+1
i are negative, a precaution is pro-

posed as follows:

θkr = Arg min θki ; θk+1
r = Arg min θk+1

i ;

a ∼ U (0, 1) ;h =

∣∣∣∣∣ a·θkr
θk+1
r − θkr

∣∣∣∣∣ (33)

θk+1
i = θki + h·

α

k
·

(
∂f
∂θi

−
1
m

∑m

i=1

∂f
∂θi

)
(buffer sizes)

(34)

θk+1
i = θki + h·

β

k

·

(
∂f
∂θi

−
1
n

∑n+m

i=m+1

∂f
∂θi

)
(service times)

(35)

where, Arg min is an Arena operator which considers the
minimum value and U (0, 1) is a uniform distribution that
randomly generates an integer in the interval (0, 1).

VOLUME 12, 2024 50731

K. Kassoul, N. Cheikhrouhou: Joint Allocation of Buffer Sizes and Service Times

FIGURE 8. Structure of an AD system (5 machines and 4 buffers).

Upon completing the SA, it is necessary to discretize the
buffer size values. This discretization is achieved using the
Anint operator, which takes into account the nearest integer
value and is defined as:

θi = Anint
(
θki

)
; i= 1, . . . ,m. (36)

A trade-off is made between the estimated parameter’s
precision and the duration of the simulation on the order
of 10−4 (i.e., when the variables’ variation within the same
iteration becomes negligible).

V. EXPERIMENTAL RESULTS
This section presents the experimental results, which are
divided into five parts. Firstly, we validate our approach and
verify the model’s accuracy by examining a homogeneous
system where all machines are identical and reliable. Sec-
ondly, we conduct experiments to compare the performance
of our proposed method with benchmark problems, provid-
ing a comprehensive evaluation of its effectiveness. Thirdly,
we compare the performance and effectiveness of three dif-
ferent approaches: GA, FPA, and GA-FPA, to assess their
contributions. Fourthly, we evaluate the advantages of simul-
taneously optimizing buffer sizes and service times compared
to optimizing buffer capacity alone, highlighting the benefits
the former offers. Finally, we perform experiments on a larger
AD system (as depicted in Fig. 1) to analyze the performance
of our approach in a more complex and realistic setting.
We use Arena V14.0 to develop the models and Java to imple-
ment the algorithms. Experiments are run on a PC with 8 GB
of RAM (intel Core (TM) i5 CPU @ 1.9-GHz). GA uses a
population size of 30, tournament selection, and arithmetic
crossover operators. The algorithm terminates when it either
simulates the predetermined generation number (i.e., 20) or
achieves a production rate better than the best production rate
attained so far.

A. ALGORITHMS VALIDATION
To validate our approach and ensure the model’s accuracy,
we examine a balanced scenario where all machines are
identical and reliable. This choice of a homogeneous sys-
tem allows us to leverage the symmetry in both parameters
and structure. This facilitates an intuitive verification of the
numerical results and enables us to reach a steady state (if
it exists) quickly. In fact, the homogeneity of an assembly
(or disassembly) cell implies the convergence towards a state
where the buffer sizes of the various stages (upstream or
downstream) are similar. This simplifies the analysis and

interpretation of the results. In the specific case illustrated in
Fig. 8, we assume that the maximum PR is achieved when
the storage spaces possess similar sizes, and all machines
have equivalent service times due to the system’s symmetry.
Assuming that the optimum is not known, GA-FPA is used to
estimate the optimum under the constraints: Bmax= 20 and
Tmax= 15. We know a priori that the optimum will occur
for the configurations {b13, b23, b34, b35}={5,5,5,5}and
{t1, t2, t3, t4, t5}={3,3,3,3,3}. The simulation model is exe-
cuted for 20 runs, producing a total of 10,000 parts.

As expected, our algorithm successfully identifies the opti-
mal solution corresponding to the uniform configuration of
the buffer sizes {5,5,5,5}. For the allocation of service times
found {2.99998, 3.00001, 3.00000, 3.00001, 3.00000}, there
is a slight deviation from the optimal allocation where the
processing times of all machines are equal. GA-FPA finds a
PR of 0.666420 which is very close to the PR of the optimal
configuration (0.666422), with a difference of only 0.0003%.
This example demonstrates the ability of the algorithm to
converge towards the expected optimal solution for the buffer
sizes and towards a solution very close to the optimal solution
for the service times, starting from a set of randomly gener-
ated initial solutions.

B. RESULTS ON BENCHMARK PROBLEMS
In this subsection, we assess the performance of GA-FPA
compared to the method proposed by [38]. The authors
combine a GA and a decomposition-type approximation to
simultaneously address the machine selection and buffer allo-
cation problems for AD manufacturing network design to
maximize the PR. To evaluate both methods, we employ two
test cases, denoted as Instances 1 and 2. The objective of the
optimization problem is to maximize the PR while ensuring
adherence to a total cost constraint. Notably, Nahas et al. [38]
utilize a method that incorporates machine types and buffers
as decision variables, while GA-FPA utilizes buffer sizes and
service times as decision variables. By considering these dif-
fering sets of decision variables, we can effectively compare
the performance of the two methods.

1) DESCRIPTION OF INSTANCES
Instance 1. Fig. 9 illustrates an AD system comprising
7machines and 6 buffers. The characteristics of eachmachine
for four different versions (V1 to V4) are presented in Table 1
(i.e., each machine Mi (i = 1 to 7) of version Vj (j = 1 to 4)
is characterized by its failure rate pi and its repair rate ri).
The buffer budget ranges from 70 to 90. In the case of the
method proposed by Nahas et al. [38], the AD systems are
homogeneous, and all processing times are uniform and equal
to 1.

Instance 2. In this instance, the scenario involves an AD
system comprising 7 machines and 6 buffers, illustrated
in Fig. 10. This configuration is analogous to Instance 1,
although with differences in the arrangement of machines and
buffer locations. The characteristics of the machines in this

50732 VOLUME 12, 2024

K. Kassoul, N. Cheikhrouhou: Joint Allocation of Buffer Sizes and Service Times

FIGURE 9. Structure of the AD system of instance 1 [38].

FIGURE 10. Structure of the AD system of instance 2 [38].

TABLE 1. Parameters of machines (4 versions).

instance remain consistent with those outlined in Instance 1
(refer to Table 1). However, there is a difference in the buffer
budget available, ranging from 70 to 90. Similar to Instance 1,
for the methodology proposed by Nahas et al. [38], the AD
systems maintain homogeneity, with all processing times
being uniform and set at 1.

2) DISCUSSION OF RESULTS
The aim of these two instances is twofold: firstly, to eval-
uate the impact of simultaneously optimizing buffer sizes
and service rates, and secondly, to provide a benchmark for
comparing the simultaneous optimization of buffer sizes and
machine selection. To accomplish this, our method employs
the optimal values obtained from Nahas et al. [38] through
ten runs. Specifically, we utilize the total buffer capacity Bmax
and the machine versions, as presented in columns 1 and 4 of
Table 2. For Instance 1, when the available buffer budget is 70
(resp. 80 and 90), Bmax is set to 18 (resp. 28 and 30), while for
Instance 2, Bmax is set to 21 (resp. 27 and 29). Additionally,
the total service time available, Tmax , is set to 7.

The results of the two methods are depicted in Table 2.
Columns 2 and 3 present the average PR and buffer allo-
cation from Nahas et al.’s method, respectively. On the
other hand, columns 5 to 7 display GA-FPA’s average PR,
buffer allocation, and service time allocations. An exami-
nation of the results from both instances underscores the
superior performance of the GA-FPA method in compari-
son to the simultaneous optimization approach proposed by
Nahas et al. [38]. Indeed, upon evaluating the outcomes of
our algorithm presented in column 5 alongside the results
of Nahas et al.’s work presented in column 2, it is evi-
dent that GA-FPA consistently produces a superior average
PR. This observation is consistent across different available
buffer budgets (70, 80, and 90), showcasing the robustness of
GA-FPA. The simultaneous optimization of buffer sizes and
service times emerges as a strategic advantage, emphasizing
the method’s efficacy in enhancing the average PR of the AD
system.

The analysis of buffer size allocations shows that the pat-
terns obtained through the GA-FPA method generally align
with those proposed by [38]. However, there are noteworthy
distinctions that deserve detailed consideration. For instance,
when Bmax= 30 in Instance 1, Nahas et al. [38] obtain a
uniform buffer size allocation of {5,5,5,5,5,5}, differing from
GA-FPA’s results of {4,4,8,5,5,4}. This difference is signif-
icant as it reflects a more nuanced approach in GA-FPA,
particularly in the downstream buffer sizes for the input
machines (i.e., M1, M2 and M4). Our approach allocates
smaller downstream buffer sizes for these input machines,
aiming to prevent potential blockages and enhance the overall
fluidity of the system.

Additionally, the assembly machine M3 exhibits a larger
downstream stock value (i.e., b35) in GA-FPA’s results. This
is designed to accommodate parts from bothM1 andM2, and
this larger downstream stock can help reduce the blocking
periods of these machines and the starvation periods of the
downstream machine M5. The low service time t3 of M3 fur-
ther supports this claim, as faster execution times necessitate
larger downstream buffer sizes for optimal system fluidity.
Additionally, the downstream stock of the assembly machine
M6 (i.e., b67) is observed to be smaller than that of M3 (i.e.,
b35) in GA-FPA. This allocation could be explained by the
fact that the output machineM7 has an unlimited downstream
buffer capacity, ensuring it remains unblocked.

In the second instance, similar patterns are observed.
Specifically, the input machines (i.e.,M1,M2 andM3) exhibit
smaller downstream buffer sizes (i.e., b14, b25 and b35). This
allocation is aimed at mitigating potential blockages and
enhancing the overall flow within the system. Additionally,
the assembly machineM5 stands out with a substantial down-
stream stock (i.e., b56) and a lower service time t5. This
configuration aligns with the notion that maintaining a larger
downstream stock can effectively reduce periods of starvation
for the subsequent machine, M6. This effect is particularly
pronounced in scenarios with rapid execution times, where
optimal system fluidity necessitates larger downstream buffer

VOLUME 12, 2024 50733

K. Kassoul, N. Cheikhrouhou: Joint Allocation of Buffer Sizes and Service Times

TABLE 2. Results for different buffer spaces.

sizes. Interestingly, the assembly machine M6 has a smaller
downstream stock (i.e., b67) compared to assembly machine
M5 (i.e., b56), which may be explained by considering that the
output machine M7 possesses an infinite downstream buffer
capacity, preventing it against blockages.

To summarize, Nahas et al. [38] propose that the selection
of appropriate buffer sizes and machine types plays a pivotal
role in enhancing the PR of AD systems. Moreover, the
simultaneous optimization of service times and buffer sizes
can yield even more favorable outcomes. These allocation
strategies offer valuable insights to decision-makers seeking
to optimize the efficiency of their manufacturing systems.

C. COMPARISON BETWEEN GA, PA AND GA-FPA
In the experimental setup outlined in Subsections V-B, V-C,
and V-D, our primary objective was to assess the aver-
age PR through the simulation of the production of 10,000
parts across 20 replications. The total processing time is set
to be (3 · n)-time unit, where n represents the number of
machines. All machines are identical and are susceptible to
failures. These failures and repair processes are geometrically
distributed with an average of MTBF=70 and MTTR=10
respectively. The focus of our assessment is on the hybrid
optimization algorithm GA-FPA, and we compare its perfor-
mance against the individual algorithms GA and FPA.

The results, graphically presented in Fig. 11, depict the
evolution of the average PR over 20 generations. The results
show that GA-FPA exhibits superior performance compared
to GA and FPA when considered individually, achieving the
best solution with a PR value of 0.5118, outperforming GA
(0.4979) and FPA (0.4648). A key advantage of GA-FPA lies
in its capacity to quickly identify promising regionswithin the
search space. This capability is attributed to GA’s exploration
ability, allowing GA-FPA to discern interesting areas within

FIGURE 11. Convergence curves of GA-FPA, GA, and FPA.

a mere four generations, as represented in Fig. 11. Following
this initial exploration, the algorithm strategically intensi-
fies its search within these identified regions, leveraging the
exploitation ability of FPA. This combination proves partic-
ularly advantageous in the context of complex, large-scale
combinatorial optimization models, where traditional meth-
ods are known for their computationally intensive nature.

D. COMPARISON BETWEEN SIMULTANEOUS ALLOCATION
OF BUFFERS AND SERVICE TIMES AND BUFFER SIZES
ALLOCATION
This subsection investigates the comparative evaluation of
optimizing buffer sizes and processing times simultaneously
versus the optimization of buffer size. The experiment consid-
ers an AD system comprising ten machines and nine buffers.
In cases where buffer size optimization is performed, the total
service time is held constant at Tmax= 30. The maximum
buffer size Bmax is varied across five cases: 45, 180, 270, 360,

50734 VOLUME 12, 2024

K. Kassoul, N. Cheikhrouhou: Joint Allocation of Buffer Sizes and Service Times

TABLE 3. Results of buffer, and simultaneous allocations (AD system with 10 machines and 9 buffers).

TABLE 4. Results for AD system (10 machines and 9 buffers).

and 450. The results of the experiment are detailed in Table 3.
Column 1 displays the maximum buffer size Bmax for each
case, while columns 2 and 3 present the average PR obtained
from simultaneous allocation and buffer allocation alone,
respectively. The last two columns provide the computation
time required for each scenario, measured in seconds.

The experimental results demonstrate that the simultane-
ous optimization of buffer sizes and service times leads to
superior average PR results compared to optimizing buffer
size alone. Additionally, the simultaneous allocation is faster
than buffer allocation alone in computation time. Therefore,
our results provide a clear advantage that simultaneously
optimizing buffer sizes and service times in AD systems
has a clear advantage over-optimizing buffer size alone. This
approach results in significant performance improvements,
making it a promising method for optimizing AD system
design and planning. Moreover, these results motivate further
exploration and development of other meta-heuristic-based
approaches for the BSTAP.

E. RESULTS ON LARGER PROBLEMS
In this subsection, our objective is to assess the efficacy of
the GA-FPA hybrid algorithm in addressing the complex
challenge of jointly optimizing buffer sizes and processing
times for AD systems, characterized by a substantially larger

solution space. The AD system under consideration, illus-
trated in Fig. 1, consists of ten machines and nine buffers.
Notably, the total buffer size is intentionally chosen as a
multiple of the number of buffers, specifically a multiple
of 9. This deliberate choice in the configuration is designed
to observe the buffer size allocation’s behavior relative to a
uniform allocation of buffer sizes.

Table 4 presents the results obtained through the applica-
tion of GA-FPA. The first column enumerates the values of
Bmax , ranging from 45 to 450 with increments of 45. The sec-
ond and third columns show the optimal allocations of buffer
sizes (b∗) and processing times (t∗), respectively. The fourth
column provides the average PR achieved through the optimal
allocation. Lastly, the last column presents the computation
times associated with each scenario, expressed inseconds.
Through this instance, we aim to assess the performance of
GA-FPA in addressing the intricate challenge of simultaneous
service time and buffer size allocation for larger AD systems,
where the solution space is notably expanded.

The results presented in Table 4 highlight the performance
of the GA-FPA hybrid algorithm, consistently producing
optimal solutions across twenty runs within a reasonable
computation time, as indicated in Column 5. Notably, even
in the case with the longest computation time, averaging
39.2 minutes for a maximum buffer capacity Bmaxof 450,
the algorithm’s efficiency remains within acceptable bounds,

VOLUME 12, 2024 50735

K. Kassoul, N. Cheikhrouhou: Joint Allocation of Buffer Sizes and Service Times

particularly when benchmarked against industry standards
(Respen et al., [39]).

Several noteworthy observations emerge from the analysis
of the experiments conducted on the joint allocation of buffer
capacity and service time:

1. Symmetry in Buffer Sizes: The optimal configurations
frequently exhibit symmetry between the stages con-
taining input machines M1 and M2, as illustrated in
Fig. 1. This symmetry is intuitive, considering that
there is no inherent difference between the machines
supplying buffers b13 and b23.

2. Downstream Buffer of Output MachineM10: The
upstream buffer b910 of the output machine M10 is
found to require a smaller capacity. This is attributed
to the infinite downstream storage capacity of output
machineM10, enabling sustained operation without the
need for additional buffer space. Consequently, allo-
cating additional space to a stock that tends to deplete
more rapidly is deemed unnecessary.

3. Uniform Allocation: Despite the stochastic nature of
the environment, there persists an almost uniform allo-
cation of buffer sizes. This uniformity can be attributed
to the inherent symmetry of the system, characterized
by identical machines. The algorithm consistently con-
verges to an optimal and symmetrical result, even in the
presence of stochastic variations.

VI. CONCLUSION
This paper presents an algorithm that expands the classical
BAP design to concurrently allocate service times and buffer
sizes in AD systems with unreliable machines. The algorithm
involves determining the service time of eachmachine and the
size of each buffer, ensuring that the whole buffer storage and
total processing time for the system do not exceed predefined
limits. We propose a hybrid approach named GA-FPA, which
integrates GA with FPA. The key element of this method is a
stochastic algorithm that estimates production rate gradients,
with GA providing initial solutions. TheGA’s exploration and
diversification capabilities enable rapid access to (near-) opti-
mal solutions, while FPA’s intensification and exploitation
abilities thoroughly explore these solution spaces to identify
improved solutions. One notable benefit of the presented
approach lies in its capacity to provide a solution to the design
problem through only one long simulation. This approach
meaningfully reduces the overall computation time required.

The investigation of the impact of the joint simultane-
ous allocations (i.e., buffer capacity/service time and buffer
capacity/type of machine) compared to the allocation of
buffer capacity alone on the evolution of the production rate
shows that the simultaneous allocation, whether it is buffer
size with service time or with machine type, improves the
production rate. Furthermore, our proposed method of simul-
taneous allocation of service times and buffer sizes showed an
improved production rate compared to the method of simul-
taneous allocation of machine types and buffer sizes [38].

Experiments on a larger problem (10 machines and
9 buffers) demonstrate the performance of the proposed
method in terms of solution quality and computation times.
GA-FPA outperforms both FPA and GA algorithms when
considered alone for optimization problems. Future research
could explore the limitations of GA-FPA, especially con-
cerning solution quality and computation time, and assess
its effectiveness with a higher number of machines (up to
40 or 50) common in industrial environments. Additionally,
investigating the proposed approach for multi-objective prob-
lems, such as minimizing total buffer size or work-in-process
(WIP) inventory, could be valuable. Another potential avenue
is the simultaneous design of an AD system considering all
three decision variables: buffer sizes, machine types, and ser-
vice times, requiring an integrated optimization approach to
address their interdependencies and enhance overall system
performance.

DATA AVAILABILITY STATEMENT
The paper includes no data.

DISCLOSURE STATEMENT
The authors report there are no competing interests to declare.

REFERENCES
[1] S. Gershwin, Manufacturing Systems Analysis, vol. 7632. Engle-Wood

Cliffs, NJ, USA: Prentice-Hall, 1994, pp. 69–93.
[2] C. G. S. Sikora, Assembly-Line Balancing Under Demand Uncertainty

(Gabler Theses). Wiesbaden, Germany: Springer, 2022, doi: 10.1007/978-
3-658-36282-9.

[3] J.-S. Tancrez, ‘‘A decomposition method for assembly/disassembly sys-
tems with blocking and general distributions,’’ Flexible Services Manuf. J.,
vol. 32, no. 2, pp. 272–296, Jun. 2020, doi: 10.1007/s10696-019-09332-z.

[4] N. Cheikhrouhou and B. Descotes-Genon, ‘‘Buffer design in stochastic
assembly/disassembly systems,’’ IFAC Proc. Volumes, vol. 33, no. 17,
pp. 867–872, Jul. 2000.

[5] R. Arista, X. Zheng, J. Lu, and F. Mas, ‘‘An ontology-based engineering
system to support aircraft manufacturing system design,’’ J. Manuf. Syst.,
vol. 68, pp. 270–288, Jun. 2023, doi: 10.1016/j.jmsy.2023.02.012.

[6] S. Lidberg, T. Aslam, L. Pehrsson, and A. H. C. Ng, ‘‘Optimizing
real-world factory flows using aggregated discrete event simulation mod-
elling,’’Flexible ServicesManuf. J., vol. 32, no. 4, pp. 888–912, Dec. 2020,
doi: 10.1007/s10696-019-09362-7.

[7] M. Chica, J. Bautista, and J. de Armas, ‘‘Benefits of robust multiob-
jective optimization for flexible automotive assembly line balancing,’’
Flexible Services Manuf. J., vol. 31, no. 1, pp. 75–103, Mar. 2019, doi:
10.1007/s10696-018-9309-y.

[8] Y.-C. L. Ho and X.-R. Cao, Perturbation Analysis of Discrete Event
Dynamic Systems. Germany: Springer, 2012.

[9] S. Scrivano, B. Tan, and T. Tolio, ‘‘Continuous-flow simulation of man-
ufacturing systems with assembly/disassembly machines, multiple loops
and general layout,’’ J. Manuf. Syst., vol. 69, pp. 103–118, Aug. 2023, doi:
10.1016/j.jmsy.2023.05.028.

[10] M. Hanafy and H. ElMaraghy, ‘‘Modular product platform config-
uration and co-planning of assembly lines using assembly and dis-
assembly,’’ J. Manuf. Syst., vol. 42, pp. 289–305, Jan. 2017, doi:
10.1016/j.jmsy.2016.12.002.

[11] S. Xi, J. M. Smith, Q. Chen, N. Mao, H. Zhang, and A. Yu, ‘‘Simultaneous
machine selection and buffer allocation in large unbalanced series-parallel
production lines,’’ Int. J. Prod. Res., vol. 60, no. 7, pp. 2103–2125,
Apr. 2022.

[12] S. G. Powell and D. F. Pyke, ‘‘Buffering unbalanced assembly systems,’’
IIE Trans., vol. 30, no. 1, pp. 55–65, 1997, doi: 10.1023/a:1007493512502.

[13] L. Fuxman, ‘‘Optimal buffer allocation in asynchronous cyclic mixed-
model assembly lines,’’ Prod. Oper. Manage., vol. 7, no. 3, pp. 294–311,
Sep. 1998, doi: 10.1111/j.1937-5956.1998.tb00458.x.

50736 VOLUME 12, 2024

http://dx.doi.org/10.1007/978-3-658-36282-9
http://dx.doi.org/10.1007/978-3-658-36282-9
http://dx.doi.org/10.1007/s10696-019-09332-z
http://dx.doi.org/10.1016/j.jmsy.2023.02.012
http://dx.doi.org/10.1007/s10696-019-09362-7
http://dx.doi.org/10.1007/s10696-018-9309-y
http://dx.doi.org/10.1016/j.jmsy.2023.05.028
http://dx.doi.org/10.1016/j.jmsy.2016.12.002
http://dx.doi.org/10.1023/a:1007493512502
http://dx.doi.org/10.1111/j.1937-5956.1998.tb00458.x

K. Kassoul, N. Cheikhrouhou: Joint Allocation of Buffer Sizes and Service Times

[14] T. Yamada and M. Matsui, ‘‘A management design approach to assembly
line systems,’’ Int. J. Prod. Econ., vol. 84, no. 2, pp. 193–204, May 2003.

[15] N. Hemachandra and S. K. Eedupuganti, ‘‘Performance analysis and buffer
allocations in some open assembly systems,’’ Comput. Oper. Res., vol. 30,
no. 5, pp. 695–704, Apr. 2003.

[16] S. Shaaban, T. McNamara, and V. Dmitriev, ‘‘Asymmetrical buffer allo-
cation in unpaced merging assembly lines,’’ Comput. Ind. Eng., vol. 109,
pp. 211–220, Jul. 2017, doi: 10.1016/j.cie.2017.05.008.

[17] A. A. Bulgak, ‘‘Analysis and design of split and merge unpaced
assembly systems by metamodelling and stochastic search,’’ Int.
J. Prod. Res., vol. 44, nos. 18–19, pp. 4067–4080, Sep. 2006, doi:
10.1080/00207540600564625.

[18] H. Chehade, F. Yalaoui, L. Amodeo, and F. Dugardin, ‘‘Buffers sizing
in assembly lines using a Lorenz multiobjective ant colony optimization
algorithm,’’ in Proc. Int. Conf. Mach. Web Intell., Oct. 2010, pp. 283–287.

[19] L. Bertazzi, ‘‘Determining the optimal dimension of a work-in-process
storage area,’’ Int. J. Prod. Econ., vol. 131, no. 2, pp. 483–489, Jun. 2011.

[20] A. Alfieri, A. Matta, and E. Pastore, ‘‘The time buffer approximated
buffer allocation problem: A row–column generation approach,’’
Comput. Oper. Res., vol. 115, Mar. 2020, Art. no. 104835, doi:
10.1016/j.cor.2019.104835.

[21] H. Tempelmeier, ‘‘Practical considerations in the optimization of flow pro-
duction systems,’’ Int. J. Prod. Res., vol. 41, no. 1, pp. 149–170, Jan. 2003,
doi: 10.1080/00207540210161641.

[22] J. M. Smith, ‘‘Simultaneous buffer and service rate allocation in open finite
queueing networks,’’ IISE Trans., vol. 50, no. 3, pp. 203–216, Mar. 2018,
doi: 10.1080/24725854.2017.1300359.

[23] M. S. Hillier and F. S. Hillier, ‘‘Simultaneous optimization of work
and buffer space in unpaced production lines with random process-
ing times,’’ IIE Trans., vol. 38, no. 1, pp. 39–51, Jan. 2006, doi:
10.1080/07408170500208289.

[24] S. Spieckermann, K. Gutenschwager, H. Heinzel, and S. Voß, ‘‘Simulation-
based optimization in the automotive industry—A case study on body shop
design,’’ Simulation, vol. 75, nos. 5–6, pp. 276–286, 2000.

[25] F. R. B. Cruz, G. Kendall, L. While, A. R. Duarte, and N. L. C. Brito,
‘‘Throughput maximization of queueing networks with simultaneous min-
imization of service rates and buffers,’’ Math. Problems Eng., vol. 2012,
Mar. 2012, Art. no. e692593, doi: 10.1155/2012/692593.

[26] F. R. B. Cruz, A. R. Duarte, and G. L. Souza, ‘‘Multi-objective perfor-
mance improvements of general finite single-server queueing networks,’’
J. Heuristics, vol. 24, no. 5, pp. 757–781, Oct. 2018, doi: 10.1007/s10732-
018-9379-8.

[27] K. Kassoul, N. Cheikhrouhou, and N. Zufferey, ‘‘Simultaneous allocation
of buffer capacities and service times in unreliable production lines,’’ Int.
J. Prod. Res., pp. 1–21, Jan. 2023, doi: 10.1080/00207543.2023.2168310.

[28] M. D. Mascolo, R. David, and Y. Dallery, ‘‘Modeling and analysis of
assembly systems with unreliable machines and finite buffers,’’ IIE Trans.,
vol. 23, no. 4, pp. 315–330, Dec. 1991, doi: 10.1080/07408179108963866.

[29] T. Harada and E. Alba, ‘‘Parallel genetic algorithms: A useful sur-
vey,’’ ACM Comput. Surv., vol. 53, no. 4, pp. 1–39, Jul. 2021, doi:
10.1145/3400031.

[30] S. Katoch, S. S. Chauhan, and V. Kumar, ‘‘A review on genetic algorithm:
Past, present, and future,’’ Multimedia Tools Appl., vol. 80, no. 5,
pp. 8091–8126, Feb. 2021, doi: 10.1007/s11042-020-10139-6.

[31] K. Kassoul, N. Cheikhrouhou, and N. Zufferey, ‘‘Buffer allocation design
for unreliable production lines using genetic algorithm and finite perturba-
tion analysis,’’ Int. J. Prod. Res., vol. 60, no. 10, pp. 3001–3017,May 2022,
doi: 10.1080/00207543.2021.1909169.

[32] D. Newton, F. Yousefian, and R. Pasupathy, ‘‘Stochastic gradient descent:
Recent trends,’’ in Recent Advances in Optimization and Modeling
of Contemporary Problems. Catonsville, MD, USA: INFORMS, 2018,
pp. 193–220.

[33] A. Amirteimoori and R. Kia, ‘‘Concurrent scheduling of jobs and AGVs
in a flexible job shop system: A parallel hybrid PSO-GA meta-heuristic,’’
Flexible Services Manuf. J., vol. 35, no. 3, pp. 727–753, Sep. 2023, doi:
10.1007/s10696-022-09453-y.

[34] C. Jin, F. Li, E. C. C. Tsang, L. Bulysheva, and M. Y. Kataev, ‘‘A new
compound arithmetic crossover-based genetic algorithm for constrained
optimisation in enterprise systems,’’ Enterprise Inf. Syst., vol. 11, no. 1,
pp. 122–136, Jan. 2017, doi: 10.1080/17517575.2015.1080302.

[35] R. Suri and Y. T. Leung, ‘‘Single run optimization of a SIMAN model
for closed loop flexible assembly systems,’’ in Proc. 19th Conf. Winter
Simulation, Atlanta, GA, USA, Dec. 1987, pp. 738–748.

[36] R. Suri and Y. T. Leung, ‘‘Single run optimization of a SIMAN model for
closed loop flexible assembly systems,’’ in Proc. 19th Conf. Winter Simul.
(WSC), 1987, pp. 738–748.

[37] H. Robbins and S. Monro, ‘‘A stochastic approximation method,’’ Ann.
Math. Stat., vol. 22, no. 3, pp. 400–407, Sep. 1951.

[38] N. Nahas, M. Nourelfath, and M. Gendreau, ‘‘Selecting machines
and buffers in unreliable assembly/disassembly manufacturing net-
works,’’ Int. J. Prod. Econ., vol. 154, pp. 113–126, Aug. 2014, doi:
10.1016/j.ijpe.2014.04.011.

[39] J. Respen, N. Zufferey, and P. Wieser, ‘‘Three-level inventory deployment
for a luxury watch company facing various perturbations,’’ J. Oper. Res.
Soc., vol. 68, no. 10, pp. 1195–1210, Oct. 2017.

KHELIL KASSOUL received the Ph.D. degree
in economics and management from Geneva
School of Economics and Management (GSEM).
From 2003 to 2021, he held the position of a
Teacher in mathematics and physics for Swiss
maturity and Baccalaureat classes. He is currently
a Researcher with Geneva School of Business
Administration (HEG), University of Applied Sci-
ences of Western Switzerland (HES-SO). Previ-
ously, he was an AssociateMember with European

Organization for Nuclear Research (CERN). His research interests include
applied mathematics, production systems modeling, simulation and opti-
mization, inventory management, and artificial intelligence.

NAOUFEL CHEIKHROUHOU (Senior Member,
IEEE) received the Graduate degree from the
School of Engineers of Tunis and the Ph.D. degree
in industrial engineering from the Grenoble Insti-
tute of Technology, in 2001. He is currently a
Professor in supply chain, logistics and operations
management with Geneva School of Business
Administration, University of Applied Sciences
Western Switzerland. Previously, he was lead-
ing the Operations Management Research Group,

Swiss Federal Institute of Technology at Lausanne (EPFL). His main
research interests include modeling, simulation and optimization of enter-
prise networks, behavioral operations management, and demand planning
and forecasting. He received the Burbidge Award, in 2003, and the BG
Ingénieurs Conseils Award, in 2013, for his contribution to the research
excellence in the fields. Leading different projects with the collaboration
of national and international industrial companies, he has published more
than 100 papers in scientific journals and conferences and regularly acts as
a keynote speaker in academic and industrial international conferences.

VOLUME 12, 2024 50737

http://dx.doi.org/10.1016/j.cie.2017.05.008
http://dx.doi.org/10.1080/00207540600564625
http://dx.doi.org/10.1016/j.cor.2019.104835
http://dx.doi.org/10.1080/00207540210161641
http://dx.doi.org/10.1080/24725854.2017.1300359
http://dx.doi.org/10.1080/07408170500208289
http://dx.doi.org/10.1155/2012/692593
http://dx.doi.org/10.1007/s10732-018-9379-8
http://dx.doi.org/10.1007/s10732-018-9379-8
http://dx.doi.org/10.1080/00207543.2023.2168310
http://dx.doi.org/10.1080/07408179108963866
http://dx.doi.org/10.1145/3400031
http://dx.doi.org/10.1007/s11042-020-10139-6
http://dx.doi.org/10.1080/00207543.2021.1909169
http://dx.doi.org/10.1007/s10696-022-09453-y
http://dx.doi.org/10.1080/17517575.2015.1080302
http://dx.doi.org/10.1016/j.ijpe.2014.04.011

