000002473 001__ 2473
000002473 005__ 20190326164008.0
000002473 022__ $$a0720-728X 000002473 0247_$$2DOI$$a10.1007/s00591-017-0209-0 000002473 037__$$aARTICLE
000002473 041__ $$aeng 000002473 245__$$aHow Bürgi computed the sines of all integer angles simultaneously in 1586
000002473 260__ $$c2018 000002473 269__$$a2018-03
000002473 300__ $$a20 pages 000002473 506__$$avisible
000002473 520__ $$9eng$$aWe present an algorithm discovered by Jost Bürgi around 1586, lost until 2013, and proven in 2015. Bürgi’s method needs only sums of integers and divisions by 2 to compute simultaneously and with any desired accuracy the sines of the nth parts of the right angle. We explain why it works with a new proof using polygons and discrete Fourier transforms.
000002473 546__ $$aEnglish 000002473 540__$$acorrect
000002473 592__ $$aHEI-VS 000002473 592__$$bInstitut Systèmes industriels
000002473 592__ $$cIngénierie et Architecture 000002473 65017$$aIngénierie
000002473 6531_ $$9eng$$aJost Bürgi
000002473 6531_ $$9eng$$asine table
000002473 6531_ $$9eng$$adiscrete Fourier transformation
000002473 6531_ $$9eng$$afinite difference
000002473 6531_ $$9eng$$aplanar polygon
000002473 6531_ $$9eng$$aNapoleon’s theorem
000002473 6531_ $$9eng$$aPetr–Douglas–Neumann theorem
000002473 655__ $$ascientifique 000002473 700__$$aNicollier, Grégoire$$uSchool of Engineering, HES-SO Valais-Wallis, HEI, HES-SO // University of Applied Sciences Western Switzerland 000002473 773__$$g2018, 65, 1, pp. 15-34$$tMathematische Semesterberichte 000002473 8564_$$s2425208$$uhttps://hesso.tind.io/record/2473/files/Nicollier_2018_Buergi.pdf 000002473 906__$$aGREEN
000002473 909CO $$ooai:hesso.tind.io:2473$$pGLOBAL_SET
000002473 950__ $$aI2 000002473 980__$$ascientifique