TRIBOLOGICAL STUDY AND COATINGS IMPACT ON RELEASE FORCES DURING INJECTION MOULDING.

L. P. Nielsen¹, B. Zabala², E. Fuentes², K. P. Almtoft¹, B. H. Christensen¹, M. Rytter³ and Stefan Hengsberger⁴

¹Tribology Centre, Danish Technological Institute, Denmark
E-mail: lpn@dti.dk
²IK4-TEKNIKER, Spain
³Winther Mould Technology, Denmark
⁴Institute for Applied Plastics Research, iRAP, Switzerland

ABSTRACT:

In the present study we compare in situ measured demoulding forces with model tests based on reciprocating pin-on-disc configuration at high temperature simulating the mould/thermoplastic interphase. The ejection force and pin-on-disc friction properties were measured for four industrially relevant polymer types (PP, POM, ABS and TPU). The impact on the ejection force was quantified when adding different surface pretreatments (as machined, grinded, blasted, polished and laser textured) to the involved pin-on-disc surfaces and the injection moulding cores. Different PVD coatings (CrN, CrN-HiPIMS and DLC) combined with post treatment involving high-current implantation of nitrogen were investigated. The results revealed that the ejection force could be lowered by up to 70% for some of the thermoplastic types when applying a combination of a wear-resistant coating and nitrogen ion implantation.

Keywords: Plastic injection moulding; PVD coatings; ion implantation; release forces; friction

INTRODUCTION

Injection moulding of thermoplastic components is a huge business worldwide. The applied moulds are getting increasingly more complex and costly as the 3D-complexity of the moulded component increases. It is therefore important to increase the lifetime of the moulds. At the same time, it is highly beneficial if the overall productivity could be increased by a shorter filling-cooling-releasing cycle without compromising on the quality of the moulded thermoplastic parts.

The Tribology Centre at Danish Technological Institute has optimized PVD coatings and ion implantation treatments to produce wear-resistant non-stick coatings with enhanced properties and performance. This enable mould designers and plastic injection moulding industries to solve release issues and other tribological problems such as diesel/burner effects when moulding in different polymer/filler systems.

It is well-known that it is not always easy to compare model tests and friction measurements based on rotating or reciprocal pin-on-disc experiments with release properties in a real mould. In a recent Eurostars Project (Super Slip, E!7412) we have constructed a mould with built-in force sensor enabling in situ quantification of the demoulding forces. In the Eurostars project we also quantified the friction coefficients ex situ with a special reciprocating pin-on-disc-configuration at high temperature, simulating the mould-thermoplastic tribosystem.

RESULTS AND DISCUSSION

All the tested thermoplastic types (PP, POM, ABS and TPU) showed a lower demoulding force when the injection moulding cores were coated with chromium nitride. The demoulding forces were decreasing even further when post treating with nitrogen ion implantation (CrN SS and CrN-HiPIMS SS).
Coating with DLC was observed to increase the demoulding forces. The lowest demoulding forces were observed for cores coated with CrN-HiPIMS followed by nitrogen ion implantation (CrN-HiPIMS SS). The CrN-HiPIMS coating is harder, denser and smoother than CrN based on conventional reactive DC sputtering. The highest impact was seen in connection with TPU where the demoulding force was lowered by almost 70%.

CrN coating improves the friction coefficient of the tribosystems in relation to the uncoated reference. In a real moulding process, the tribo-system is more complicated since it involves both friction between the thermoplastic part and the cores as well as shrinkage of the thermoplastic parts around the moulded core. The best performing coating during the demoulding process was the nitrogen-ion-implanted CrN-HiPIMS (CrN-HiPIMS SS). This coating was harder, denser and smoother as compared to conventional chrome nitride based on reactive DC sputtering.

CONCLUSIONS

The in-situ measured demoulding forces confirm the empirical knowledge from the thermoplastic injection moulding industry namely that:

- Hydrogenated DLC (a-C:H) increases the demoulding forces.
- Different types of chrome nitride lower the demoulding forces for POM, ABS, PP and TPU.
- Nitrogen-implanted HiPIMS-CrN (HiPIMS-CrN SS) reveals the lowest possible demoulding forces.

Finally, it was shown that ex situ reciprocal sliding friction measurements are helpful to establish differences and understanding the tribological behavior of the different tribosystems. The tests performed using cores provides complementary information about the effect of all the parameters involved in the injection moulding process. Using these tests, it is possible to quantify the benefits of applying tribological coatings on mould surfaces.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the funding from the Eurostars system and the national funding mechanisms in Spain (CDTI), Switzerland (SBFI) and Denmark (Innovation Fund Denmark).