Large-scale nonlinear variable selection via kernel random features

Gregorova, Magda (Haute école de gestion de Genève, HES-SO // Haute Ecole Spécialisée de Suisse Occidentale ; University of Geneva, Switzerland) ; Ramapuram, Jason (Haute école de gestion de Genève, HES-SO // Haute Ecole Spécialisée de Suisse Occidentale ; University of Geneva, Switzerland) ; Kalousis, Alexandros (Haute école de gestion de Genève, HES-SO // Haute Ecole Spécialisée de Suisse Occidentale ; University of Geneva, Switzerland) ; Marchand-Maillet, Stéphane (University of Geneva, Switzerland)

We propose a new method for input variable selection in nonlinear regression. The method is embedded into a kernel regression machine that can model general nonlinear functions, not being a priori limited to additive models. This is the first kernel-based variable selec- tion method applicable to large datasets. It sidesteps the typical poor scaling properties of kernel methods by mapping the inputs into a relatively low-dimensional space of random features. The algorithm discovers the variables relevant for the regression task together with learning the prediction model through learning the appropriate nonlinear random feature maps. We demonstrate the outstanding performance of our method on a set of large-scale synthetic and real datasets.


Type de conférence:
full paper
Faculté:
Economie et Services
Ecole:
HEG - Genève
Institut:
CRAG - Centre de Recherche Appliquée en Gestion
Classification:
Economie/gestion
Adresse bibliogr.:
Dublin, Ireland, 10-14 September 2018
Date:
2018-09
Dublin, Ireland
10-14 September 2018
Pagination:
16 p.
Publié dans:
Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKKD)
Ressource(s) externe(s):
Le document apparaît dans:



 Notice créée le 2018-10-11, modifiée le 2019-11-28

Fichiers:
Télécharger le document
PDF

Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)