Red blood cell phase separation in symmetric and asymmetric microchannel networks : effect of capillary dilation and inflow velocity

Clavica, Francesco (ARTORG Center, University of Bern, Bern, Switzerland) ; Kämpfer-Homsy, Alexandra (School of Engineering – HE-Arc Ingénierie, HES-SO // University of Applied Sciences Western Switzerland) ; Jeandupeux, Laure (School of Engineering – HE-Arc Ingénierie, HES-SO // University of Applied Sciences Western Switzerland) ; Obrist, Dominik (ARTORG Center, University of Bern, Bern, Switzerland)

The non-uniform partitioning or phase separation of red blood cells (RBCs) at a diverging bifurcation of a microvascular network is responsible for RBC heterogeneity within the network. The mechanisms controlling RBC heterogeneity are not yet fully understood and there is a need to improve the basic understanding of the phase separation phenomenon. In this context, in vitro experiments can fill the gap between existing in vivo and in silico models as they provide better controllability than in vivo experiments without mathematical idealizations or simplifications inherent to in silico models. In this study, we fabricated simple models of symmetric/asymmetric microvascular networks; we provided quantitative data on the RBC velocity, line density and flux in the daughter branches. In general our results confirmed the tendency of RBCs to enter the daughter branch with higher flow rate (Zweifach-Fung effect); in some cases even inversion of the Zweifach-Fung effect was observed. We showed for the first time a reduction of the Zweifach-Fung effect with increasing flow rate. Moreover capillary dilation was shown to cause an increase of RBC line density and RBC residence time within the dilated capillary underlining the possible role of pericytes in regulating the oxygen supply.

Article Type:
Ingénierie et Architecture
HE-Arc Ingénierie
Aucun institut
12 p.
Published in:
Scientific reports
Numeration (vol. no.):
2016, article no. 36763
External resources:
Appears in Collection:

 Record created 2020-06-30, last modified 2020-07-14

Download fulltext

Rate this document:

Rate this document:
(Not yet reviewed)