Files

Abstract

Purpose : The purpose of this paper is to overcome the limitations of sensory substitution methods (SSDs) to represent high-level or conceptual information involved in vision, which are mainly produced by the biological sensory mismatch between sight and substituting senses. Thus, provide the visually impaired with a more practical and functional SSD. Design/methodology/approach : Unlike any other approach, the SSD extends beyond a sensing prototype, by integrating computer vision methods to produce reliable knowledge about the physical world (at the lowest cost to the user). Importantly though, the authors do not abandon the typical encoding of low-level features into sound. The paper simply argues that any visual perception can be achieved through hearing needs to be reinforced or enhanced by techniques that lie beyond mere visual-to-audio mapping (e.g. computer vision, image processing). Findings : Experiments reported in this paper reveal that the See ColOr is learnable and functional, and provides easy interaction. In moderate time, participants were enabled to grasp visual information of the world out of which they could derive: spatial awareness, ability to find someone, location of daily objects and skill to walk safely avoiding obstacles. The encouraging results open a door toward autonomous mobility of the blind. Originality/value : The paper uses the “extended” approach to introduce and justify that the system is brand new, as well as the experimental studies on computer-vision extension of SSDs that are presented. Also, this is the first paper reporting on a terminated, integrated and functional system.

Details

Actions

PDF