Imaging of cortical structures and microvasculature using extended-focus optical coherence tomography at 13  μm

Marchand, Paul J. (Laboratoire d'Optique Biomédicale, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland) ; Szlag, DanielLaboratoire d'Optique Biomédicale, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland (Extermann, Jérôme) ; Extermann, Jérôme (Laboratoire d'Optique Biomédicale, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland) ; Bouwens, Arno (Laboratoire d'Optique Biomédicale, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland) ; Nguyen, David (Laboratoire d'Optique Biomédicale, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland) ; Rudin, Markus (Institute of Biomedical Engineering, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland) ; Lasser, Theo (Laboratoire d'Optique Biomédicale, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland)

Extended-focus optical coherence tomography (xf-OCT) is a variant of optical coherence tomography (OCT) wherein the illumination and/or detection modes are engineered to provide a constant diffractionless lateral resolution over an extended depth of field (typically 3 to 10× the Rayleigh range). xf-OCT systems operating at 800 nm have been devised and used in the past to image brain structures at high-resolution in vivo, but are limited to ∼500  μm in penetration depth due to their short illumination wavelength. Here we present an xf-OCT system optimized to an image deeper within the cortex by using a longer illumination central wavelength of 1310 nm. The system offers a lateral resolution of 3 and 6.5 μm, over a depth of 900 μm and >1.5  mm using a 10× and 5× objective, respectively, in air. We characterize the system’s resolution using microbeads embedded in PDMS and demonstrate its capabilities by imaging the cortical structure and microvasculature in anesthetized mice to a depth of ∼0.8  mm. Finally, we illustrate the difference in penetration depths obtainable with the new system and an xf-OCT system operating at 800 nm.


Note: EXTERMANN, Jérôme est un chercheur à la HES-SO, HEPIA, depuis 2012.


Keywords:
Article Type:
scientifique
Faculty:
Ingénierie et Architecture
School:
HEPIA - Genève
Institute:
inSTI - Institut des Sciences et Technologies industrielles
Date:
2018-08
Pagination:
4 p.
Published in:
Optics Letters
Numeration (vol. no.):
2018, vol. 43, no. 8, pp. 1782-1785
DOI:
ISSN:
0146-9592
Appears in Collection:



 Record created 2020-08-25, last modified 2020-10-27


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)