Résumé

Contemporary schemas of brain organization now include multisensory processes both in low-level cortices as well as at early stages of stimulus processing. Evidence has also accumulated showing that unisensory stimulus processing can result in cross-modal effects. For example, task-irrelevant and lateralised sounds can activate visual cortices; a phenomenon referred to as the auditory-evoked contralateral occipital positivity (ACOP). Some claim this is an example of automatic attentional capture in visual cortices. Other results, however, indicate that context may play a determinant role. Here, we investigated whether selective attention to spatial features of sounds is a determining factor in eliciting the ACOP. We recorded high-density auditory evoked potentials (AEPs) while participants selectively attended and discriminated sounds according to four possible stimulus attributes: location, pitch, speaker identity or syllable. Sound acoustics were held constant, and their location was always equiprobable (50% left, 50% right). The only manipulation was to which sound dimension participants attended. We analysed the AEP data from healthy participants within an electrical neuroimaging framework. The presence of sound-elicited activations of visual cortices depended on the to-be-discriminated, goal-based dimension. The ACOP was elicited only when participants were required to discriminate sound location, but not when they attended to any of the non-spatial features. These results provide a further indication that the ACOP is not automatic. Moreover, our findings showcase the interplay between task-relevance and spatial (un)predictability in determining the presence of the cross-modal activation of visual cortices.

Einzelheiten

Aktionen

PDF