On the efficiency of OpenACC-aided GPU-Based FDTD approach : application to lightning electromagnetic fields

Mohammadi, Sajad (Bu-Ali Sina University, Hamedan, Iran) ; Karami, Hamidreza (Bu-Ali Sina University, Hamedan, Iran) ; Azadifar, Mohammad (School of Management and Engineering Vaud, HES-SO // University of Applied Sciences Western Switzerland) ; Rachidi, Farhad (EPFL, Lausanne, Switzerland)

An open accelerator (OpenACC)-aided graphics processing unit (GPU)-based finite difference time domain (FDTD) method is presented for the first time for the 3D evaluation of lightning radiated electromagnetic fields along a complex terrain with arbitrary topography. The OpenACC directive-based programming model is used to enhance the computational performance, and the results are compared with those obtained by using a CPU-based model. It is shown that OpenACC GPUs can provide very accurate results, and they are more than 20 times faster than CPUs. The presented results support the use of OpenACC not only in relation to lightning electromagnetics problems, but also to large-scale realistic electromagnetic compatibility (EMC) applications in which computation time efficiency is a critical factor.


Keywords:
Article Type:
scientifique
Faculty:
Ingénierie et Architecture
School:
HEIG-VD
Institute:
IICT - Institut des Technologies de l'Information et de la Communication
Date:
2020-03
Pagination:
15 p.
Published in:
Applied Sciences
Numeration (vol. no.):
2020, vol. 10, no. 7
DOI:
ISSN:
2076-3417
Appears in Collection:



 Record created 2021-02-23, last modified 2021-02-25

Fulltext:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)