Résumé

Solar conventional adaptive optics (CAO) with one deformable-mirror uses a small field-of-view (FOV) for wave-front sensing, which yields a small corrected FOV for high-resolution imaging. Solar activities occur in a two-dimensional extended FOV and studies of solar magnetic fields need high-resolution imaging over a FOV at least 60''. Recently, solar Tomography Adaptive Optics (TAO) and Multi-Conjugate Adaptive Optics (MCAO) were being developed to overcome this problem of small AO corrected FOV. However, for both TAO and MCAO, wavefront distortions need to be tomographically reconstructed from measurements on multiple guide stars, which is a complicated and time-consuming process. Solar Ground-Layer Adaptive Optics (S-GLAO) uses one or several guide stars, and does not rely on a tomographic reconstruction of the atmospheric turbulence. In this publication, we present two unique wavefront sensing approaches for the S-GLAO. We show that our S-GLAO can deliver good to excellent performance at variable seeing conditions in the Near Infrared (NIR) J and H bands, and is much simpler to implement. We discuss details of our S-GLAO associated wavefront approaches, which make our S-GLAO a unique solution for sunspot high-resolution imaging that other current adaptive optics systems, including the solar MCAO, cannot offer.

Détails

Actions