Résumé

The proliferation of data-demanding machine learning methods has brought to light the necessity for methodologies which can enlarge the size of training datasets, with simple, rule-based methods. In-line with this concept, the fingerprint augmentation scheme proposed in this work aims to augment fingerprint datasets which are used to train positioning models. The proposed method utilizes fingerprints which are recorded in spacial proximity, in order to perform fingerprint augmentation, creating new fingerprints which combine the features of the original ones. The proposed method of composing the new, augmented fingerprints is inspired by the crossover and mutation operators of genetic algorithms. The ProxyFAUG method aims to improve the achievable positioning accuracy of fingerprint datasets, by introducing a rule-based, stochastic, proximity-based method of fingerprint augmentation. The performance of ProxyFAUG is evaluated in an outdoor Sigfox setting using a public dataset. The best performing published positioning method on this dataset is improved by 40% in terms of median error and 6% in terms of mean error, with the use of the augmented dataset. The analysis of the results indicates a systematic and significant performance improvement at the lower error quartiles, as indicated by the impressive improvement of the median error.

Détails

Actions

PDF